Global existence and blowup of solutions for a class of nonlinear higher-order wave equations

被引:0
|
作者
Jun Zhou
Xiongrui Wang
Xiaojun Song
Chunlai Mu
机构
[1] Southwest University,School of Mathematics and Statistics
[2] Yibin College,Department of Mathematics
[3] China West Normal University,Department of Mathematics
[4] Chongqing University,School of Mathematics and Statistics
关键词
35L20; 35L70; 58G16; Global existence; Blowup; Energy decay; Lifespan;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of nonlinear higher-order wave equation with nonlinear damping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt}+(-\Delta)^mu+a|u_t|^{p-2}u_t=b|u|^{q-2}u$$\end{document}in a bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset\mathbb{R}^N}$$\end{document} (N ≥ 1 is a natural number). We show that the solution is global in time under some conditions without the relation between p and q and we also show that the local solution blows up in finite time if q > p with some assumptions on initial energy. The decay estimate of the energy function for the global solution and the lifespan for the blow-up solution are given. This extend the recent results of Ye (J Ineq Appl, 2010).
引用
收藏
页码:461 / 473
页数:12
相关论文
共 50 条
  • [1] Global existence and blowup of solutions for a class of nonlinear higher-order wave equations
    Zhou, Jun
    Wang, Xiongrui
    Song, Xiaojun
    Mu, Chunlai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 461 - 473
  • [2] Global existence of weak solutions to a class of higher-order nonlinear evolution equations
    Xiao, Li-ming
    Luo, Cao
    Liu, Jie
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5357 - 5376
  • [3] Existence and nonexistence of global solutions for a class of nonlinear wave equations of higher order
    Wang, Yu-Zhu
    Wang, Yin-Xia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4500 - 4507
  • [4] Existence and Asymptotic Behavior of Global Solutions for a Class of Nonlinear Higher-Order Wave Equation
    Yaojun Ye
    Journal of Inequalities and Applications, 2010
  • [5] Existence and Asymptotic Behavior of Global Solutions for a Class of Nonlinear Higher-Order Wave Equation
    Ye, Yaojun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [6] Existence and Nonexistence of Global Solutions for Higher-Order Nonlinear Viscoelastic Equations
    Ye, Yaojun
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (01): : 21 - 41
  • [8] Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term
    Yang, ZJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) : 520 - 540
  • [9] Global existence and blowup of solutions for a class of nonlinear wave equations with linear pseudo-differential operator
    Chen, Yuxuan
    Qiu, Xiaotong
    Xu, Runzhang
    Yang, Yanbing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [10] Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations
    Zhang, Lijun
    Khalique, Chaudry Masood
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015