Hypercyclic and Chaotic Convolution Associated with the Jacobi–Dunkl Operator

被引:0
作者
F. Chouchene
H. Mejjaoli
M. Mili
K. Trimèche
机构
[1] Faculty of Sciences of Monastir,Department of Mathematics
[2] Taibah University,Department of Mathematics, College of Sciences
[3] CAMPUS,Faculty of Sciences of Tunis, Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2014年 / 11卷
关键词
42A85; 44A35; 46E10; 46F12; 47A16; Jacobi–Dunkl operator; convolution; hypercyclic and chaotic operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Jacobi–Dunkl convolution operators on some distribution spaces. We characterize the Jacobi–Dunkl convolution operators as those ones that commute with the Jacobi–Dunkl translations and with the Jacobi–Dunkl operators. Also we prove that the Jacobi–Dunkl convolution operators are hypercyclic and chaotic on the spaces under consideration and we give a universality property for the generalized heat equation associated with them.
引用
收藏
页码:577 / 600
页数:23
相关论文
共 24 条
  • [1] Ben Salem N.(2006)Convolution structure associated with the Jacobi-Dunkl operator on Ramanujan J. 12 359-378
  • [2] Ould Ahmed Salem A.(2004)Hypercyclic and chaotic convolution operators on Chébli-Trimèche hypergroups Rocky Mountain J. Math. 34 1207-1237
  • [3] Betancor J.J.(2000)Hypercyclic and chaotic convolution operators J. Lond. Math. Soc. 62 253-262
  • [4] Betancor J.D.(1929)Démonstration d’un théorème élémentaire sur les fonctions entières C. R. Math. Acad. Sci. Paris. 189 473-475
  • [5] Mendez J.M.R.(2003)Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on Anal. Appl. 1 387-412
  • [6] Bonet J.(2006)The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes Potential Anal. 25 103-119
  • [7] Birkhoff G.D.(1991)Operator with dense, invariant, cyclic vector manifolds J. Funct. Anal. 98 229-269
  • [8] Chouchane F.(1997)On a universality of the heat equation Math. Nachr. 188 169-171
  • [9] Mili M.(1952)Sequences of derivatives and normal families J. Anal. Math. 2 72-87
  • [10] Trimèche K.(1999)Local spectral theory and orbits of operators Proc. Amer. Math. Soc. 127 1029-1037