Singular integral operators on tent spaces: a Calderón–Zygmund theory and weak-type endpoint estimates

被引:0
作者
Yi Huang
机构
[1] Université Paris-Saclay,Laboratoire de Mathématiques d’Orsay, Univ. Paris
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Calderón–Zygmund decompositions; Tent spaces; Singular integral operators; Weak-type estimates; Off-diagonal decay; Maximal regularity operators; 42B20; 42B35; 45P05; 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a Calderón–Zygmund-type extrapolation theory for sublinear operators acting on the so-called tent spaces introduced by Coifman et al. (J Funct Anal 62(2):304–335, 1985). As an application, we prove endpoint weak-type estimates for the article [referred to as Auscher et al. (J Evol Equ 12(4):741–765, 2012)]. The main ingredient in establishing this extrapolation theory is the use of some Calderón–Zygmund-type decompositions in tent spaces. In applying this abstract theory to the class of singular integral operators on tent spaces as considered in [3], we shall use certain Hardy–Littlewood embeddings for tent space functions. These embeddings are also interesting in themselves. Applications to maximal regularity operators on tent spaces are also discussed.
引用
收藏
页码:899 / 921
页数:22
相关论文
共 44 条
[1]  
Auscher Pascal(2011)Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I Invent. Math. 184 47-115
[2]  
Axelsson Andreas(2012)Singular integral operators on tent spaces J. Evol. Equ. 12 741-765
[3]  
Auscher Pascal(2012)The maximal regularity operator on tent spaces Commun. Pure Appl. Anal. 11 2213-2219
[4]  
Kriegler Christoph(2008)Hardy spaces of differential forms on Riemannian manifolds J. Geom. Anal. 18 192-248
[5]  
Monniaux Sylvie(2004)On Publ. Mat. 48 159-186
[6]  
Portal Pierre(2011) estimates for square roots of second order elliptic operators on C. R. Math. Acad. Sci. Paris 349 297-301
[7]  
Auscher Pascal(2003)Change of angle in tent spaces Rev. Mat. Iberoamericana 19 919-942
[8]  
Monniaux Sylvie(2009)Calderón-Zygmund theory for non-integral operators and the J. Funct. Anal. 256 2561-2586
[9]  
Portal Pierre(1985) functional calculus J. Funct. Anal. 62 304-335
[10]  
Auscher Pascal(1988)On maximal Proc. Amer. Math. Soc. 102 979-984