Distance constrained vehicle routing problem to minimize the total cost: algorithms and complexity

被引:0
作者
Wei Yu
Zhaohui Liu
Xiaoguang Bao
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Shanghai Ocean University,College of Information Technology
来源
Journal of Combinatorial Optimization | 2022年 / 43卷
关键词
Vehicle routing; Cycle cover; Path cover; Approximation algorithm; Complexity; Integrality gap;
D O I
暂无
中图分类号
学科分类号
摘要
Given λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, an undirected complete graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with nonnegative edge-weight function obeying the triangle inequality and a depot vertex r∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in V$$\end{document}, a set {C1,…,Ck}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_1,\ldots ,C_k\}$$\end{document} of cycles is called a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-boundedr-cycle cover if V⊆⋃i=1kV(Ci)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \subseteq \bigcup _{i=1}^k V(C_i)$$\end{document} and each cycle Ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_i$$\end{document} contains r and has a length of at most λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. The Distance Constrained Vehicle Routing Problem with the objective of minimizing the total cost (DVRP-TC) aims to find a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-bounded r-cycle cover {C1,…,Ck}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_1,\ldots ,C_k\}$$\end{document} such that the sum of the total length of the cycles and γk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma k$$\end{document} is minimized, where γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is an input indicating the assignment cost of a single cycle. For DVRP-TC on tree metric, we show a 2-approximation algorithm and give an LP relaxation whose integrality gap lies in the interval [2,52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2}$$\end{document}]. For the unrooted version of DVRP-TC, we devise a 5-approximation algorithm and give an LP relaxation whose integrality gap is between 2 and 25. For unrooted DVRP-TC on tree metric we develop a 3-approximation algorithm. For unrooted DVRP-TC on line metric we obtain an O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3)$$\end{document} time exact algorithm, where n is the number of vertices. Moreover, we give some examples to demonstrate that our results can also be applied to the path-version of (unrooted) DVRP-TC.
引用
收藏
页码:1405 / 1422
页数:17
相关论文
共 33 条
[1]  
Arkin EM(2006)Approximations for minimum and min-max vehicle routing problems J Algorithms 59 1-18
[2]  
Hassin R(2018)Approximation algorithm for distance constraint sweep coverage without predetermined base stations Discrete Math Algorithms Appl 10 1850064-193
[3]  
Levin A(1978)Approximation algorithms for some routing problems SIAM J Comput 7 178-460
[4]  
Chen Q(2014)Improved approximation algorithms for min-max tree cover and bounded tree cover problems Algorithmica 69 443-799
[5]  
Huang X(1992)On the distance constrained vehicle routing problem Oper Res 40 790-1125
[6]  
Ran Y(2019)Approximation algorithms for distance constraint sweep coverage with base stations J Combin Optim 37 1111-214
[7]  
Frederickson GN(2012)Approximation algorithms for distance constrained vehicle routing problems Networks 59 209-613
[8]  
Hecht MS(2015)Approximation algorithms for min–max cycle cover problems IEEE Trans Comput 64 600-320
[9]  
Kim CE(2012)Approximation results for a min–max location-routing problem Discrete Appl Math 160 306-58
[10]  
Khani MR(2016)Improved approximation algorithms for some min–max and minimum cycle cover problems Theoret Comput Sci 654 45-58