Fixed Points of Automorphisms of the Vector Bundle Moduli Space Over a Compact Riemann Surface

被引:0
|
作者
Álvaro Antón-Sancho
机构
[1] Fray Luis de León University College of Education,Department of Mathematics and Experimental Science
[2] Catholic University of Ávila,undefined
来源
Mediterranean Journal of Mathematics | 2024年 / 21卷
关键词
Principal bundle; vector bundle; automorphism; fixed points; moduli space; Riemann surface; 14H10; 14H60; 57R57; 53C10;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact Riemann surface of genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} and let n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} be an integer number. The group of automorphisms of the moduli space of vector bundles over X with rank n and trivial determinant is isomorphic to H1(X,Z/(n))⋊(Out(SL(n,C))×Aut(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(X,{\mathbb {Z}}/(n))\rtimes ({{\,\textrm{Out}\,}}({{\,\textrm{SL}\,}}(n,{\mathbb {C}}))\times {{\,\textrm{Aut}\,}}(X))$$\end{document}. Several papers have studied the subvarieties of fixed points for the action of the unique outer involution of SL(n,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{SL}\,}}(n,{\mathbb {C}})$$\end{document} on this moduli space. In this paper, explicit descriptions of the fixed points for the actions of the elements of H1(X,Z/(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(X,{\mathbb {Z}}/(n))$$\end{document}, H1(X,Z/(n))⋊Out(SL(n,C))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(X,{\mathbb {Z}}/(n))\rtimes {{\,\textrm{Out}\,}}({{\,\textrm{SL}\,}}(n,{\mathbb {C}}))$$\end{document}, and Out(SL(n,C))×Aut(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Out}\,}}({{\,\textrm{SL}\,}}(n,{\mathbb {C}}))\times {{\,\textrm{Aut}\,}}(X)$$\end{document} on the moduli space of rank n and trivial determinant vector bundles over X are provided. For the description of the fixed points for the action of the elements of Out(SL(n,C))×Aut(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Out}\,}}({{\,\textrm{SL}\,}}(n,{\mathbb {C}}))\times {{\,\textrm{Aut}\,}}(X)$$\end{document}, the notion of Galois bundle is introduced. Specifically, Galois bundles over X admitting a nontrivial automorphism which commutes with the Galois structure are constructed associated with an involution σX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _X$$\end{document} of X. Finally, it is discussed how the description of fixed points for the action of the elements of [inline-graphic not available: see fulltext] is covered by the descriptions above.
引用
收藏
相关论文
共 48 条
  • [31] Approximate Hermitian–Einstein connections on principal bundles over a compact Riemann surface
    Indranil Biswas
    Steven B. Bradlow
    Adam Jacob
    Matthias Stemmler
    Annals of Global Analysis and Geometry, 2013, 44 : 257 - 268
  • [32] A moduli space of non-compact curves on a complex surface
    Shevchishin, Vsevolod V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (11) : 1527 - 1548
  • [33] TORELLI THEOREM FOR MODULI SPACES OF SL(r, C)-CONNECTIONS ON A COMPACT RIEMANN SURFACE
    Biswas, Indranil
    Munoz, Vicente
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 1 - 26
  • [34] Fixed points of principal E6-bundles over a compact algebraic curve
    Anton-Sancho, Alvaro
    QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 501 - 513
  • [35] Approximate Hermitian-Einstein connections on principal bundles over a compact Riemann surface
    Biswas, Indranil
    Bradlow, Steven B.
    Jacob, Adam
    Stemmler, Matthias
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (03) : 257 - 268
  • [36] Brauer group of a moduli space of parabolic vector bundles over a curve
    Biswas, Indranil
    Dey, Arijit
    JOURNAL OF K-THEORY, 2011, 8 (03) : 437 - 449
  • [37] The moduli space of stable vector bundles over a real algebraic curve
    Indranil Biswas
    Johannes Huisman
    Jacques Hurtubise
    Mathematische Annalen, 2010, 347 : 201 - 233
  • [38] Intersection pairings on singular moduli spaces of bundles over a Riemann surface and their partial desingularisations
    Lisa Jeffrey
    Young-Hoon Kiem
    Frances C. Kirwan
    Jonathan Woolf
    Transformation Groups, 2006, 11 : 439 - 494
  • [39] Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification
    Komyo, Arata
    Loray, Frank
    Saito, Masa-Hiko
    ADVANCES IN MATHEMATICS, 2022, 410
  • [40] Physical phase space of the lattice Yang-Mills theory and the moduli space of flat connections on a riemann surface
    S. A. Frolov
    Theoretical and Mathematical Physics, 1997, 113 : 1289 - 1298