Lower and upper solution method for the problem of elastic beam with hinged ends

被引:0
作者
Ruyun Ma
Jinxiang Wang
Yan Long
机构
[1] Northwest Normal University,Department of Mathematics
[2] Lanzhou University of Technology,Department of Applied Mathematics
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Beam; fourth-order equations; disconjugate; lower and upper solutions; Green function; 34B10; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the method of lower and upper solutions for the fourth-order differential equation which models the stationary states of the deflection of an elastic beam, whose both ends simply supported y(4)(x)+(k1+k2)y′′(x)+k1k2y(x)=f(x,y(x)),x∈(0,1),y(0)=y(1)=y′′(0)=y′′(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&y^{(4)}(x)+(k_1+k_2) y''(x)+k_1k_2 y(x)=f(x,y(x)), \ \ \ \ x\in (0,1),\\&y(0) = y(1) = y''(0) = y''(1) = 0\\ \end{aligned}$$\end{document}under the condition 0<k1<k2<x12≈4.11585\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<k_1<k_2<x_1^2\approx 4.11585$$\end{document}, where x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document} is the first positive solution of the equation xcos(x)+sin(x)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\cos (x)+\sin (x)=0$$\end{document}. The main tools are Schauder fixed point theorem and the Elias inequality.
引用
收藏
相关论文
共 42 条
  • [1] Bai Z(2002)On positive solutions of some nonlinear fourth order beam equations J. Math. Anal. Appl. 270 357-368
  • [2] Wang H(2007)Positivity and lower and upper solutions for fourth order boundary value problems Nonlinear Anal. 67 1599-1612
  • [3] Cabada A(2012)Computation of Green’s functions for boundary value problems with Mathematica Appl. Math. Comput. 219 1919-1936
  • [4] Cid J(2009)Positive fixed points and fourth-order equations Bull. Lond. Math. Soc. 41 72-78
  • [5] Sanchez L(2016)Positive and negative solutions of one-dimensional beam equation Appl. Math. Lett. 51 1-7
  • [6] Cabada A(2016)On the maximum and antimaximum principles for the beam equation Appl. Math. Lett. 56 29-33
  • [7] Cid JA(2003)Nonlinear models of suspension bridges: discussion of the results Appl. Math. 48 497-514
  • [8] Máquez-Villamarín B(1988)Existence and uniqueness theorems for the bending of an elastic beam equation Appl. Anal. 26 289-304
  • [9] Cid JA(2004)Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems Proc. R. Soc. Edinburgh Sect. A 134 179-190
  • [10] Franco D(1990)Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis SIAM Rev. 32 537-578