Derivations on commutative regular algebras

被引:4
作者
Ber A.F. [1 ]
机构
[1] ISV Solutions
关键词
algebraic independence; derivation; regular algebra; von Neumann ring;
D O I
10.3103/S1055134411030011
中图分类号
学科分类号
摘要
For a regular (in the sense of von Neumann) algebra A over an algebraically closed field of characteristic 0, we describe the linear space D(A) of all derivations on A. The description is obtained in terms of algebraically independent elements of A. In particular, we estimate the dimension of the space D(A), where A = S[0,1] is the algebra of measurable functions on [0,1]. © 2011 Allerton Press, Inc.
引用
收藏
页码:161 / 169
页数:8
相关论文
共 10 条
  • [1] Albeverio S., Ayupov S.A., Kudaybergenov K.K., Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal., 256, 9, pp. 2917-2943, (2009)
  • [2] Ber A.F., Chilin V.I., Sukochev F.A., Non-trivial derivations on commutative regular algebras, Extracta Math., 21, 2, pp. 107-147, (2006)
  • [3] Bourbaki N., Eléments De Mathématique. Algèbre Commutative, (1985)
  • [4] Bratteli O., Robinson D.W., Operator Algebras and Quantum Statistical Mechanics, 1, (1979)
  • [5] Clifford A.H., Preston G.B., The Algebraic Theory of Semigroups, 1, (1961)
  • [6] Goodearl K.R., Von Neumann Regular Rings, (1979)
  • [7] Kusraev A.G., Automorphisms and derivations on a universally complete complex f-algebra, Sibirsk. Mat. Zh., 47, 1, pp. 97-107, (2006)
  • [8] Sakai S., Operator Algebras in Dynamical Systems. The Theory of Unbounded Derivations in C*-Algebras, (1991)
  • [9] Skornyakov L.A., Dedekind Complemented Lattices and Regular Rings, (1961)
  • [10] van der Waerden B.L., Algebra, (2003)