Multifractal analysis of the divergence points of Birkhoff averages for β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-transformations

被引:0
作者
Yuanhong Chen
Zhenliang Zhang
Xiaojun Zhao
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Henan Institute of Science and Technology,School of Mathematical Sciences
[3] Peking University,School of Economics
关键词
Divergence point; -Expansion; Hausdorff dimension; 11K55; 28A80;
D O I
10.1007/s00605-016-0895-z
中图分类号
学科分类号
摘要
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-expansions. More precisely, let Tβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta }$$\end{document} be the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-transformation on [0, 1) for a general β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >1$$\end{document} and ψ:[0,1]↦R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :[0,1]\mapsto \mathbb {R}$$\end{document} be a continuous function. Denote by A(ψ,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {A}(\psi ,x)$$\end{document} all the accumulation points of {1n∑j=0n-1ψ(Tjx):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\frac{1}{n}\sum _{j=0}^{n-1}\psi (T^jx): n\ge 1\}$$\end{document}. The Hausdorff dimensions of the sets {x:A(ψ,x)⊃[a,b]},{x:A(ψ,x)=[a,b]},{x:A(ψ,x)⊂[a,b]}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{x:\textsf {A}(\psi ,x)\supset [a,b]\},\quad \{x:\textsf {A}(\psi ,x)=[a,b]\},\quad \{x:\textsf {A}(\psi ,x)\subset [a,b]\} \end{aligned}$$\end{document}i.e., the points for which the Birkhoff averages of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} do not exist but behave in a certain prescribed way, are determined completely for any continuous function ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}.
引用
收藏
页码:823 / 839
页数:16
相关论文
共 50 条