Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices

被引:0
作者
X. B. Zhang
J. H. Ryou
R. D. Dupuis
G. Walter
N. Holonyak
机构
[1] Georgia Institute of Technology,Center for Compound Semiconductors, School of Electrical and Computer Engineering
[2] The University of Illinois at Urbana-Champaign,Micro and Nanotechnology Laboratory
来源
Journal of Electronic Materials | 2006年 / 35卷
关键词
InGaP; interface; metalorganic chemical vapor deposition (MOCVD);
D O I
暂无
中图分类号
学科分类号
摘要
Lattice-matched In0.49Ga0.51P/GaAs superlattices were grown on (001) GaAs substrates using metalorganic chemical vapor deposition. The interface properties were characterized by photoluminescence, transmission electron microscopy, and x-ray diffraction. By varying the growth temperature, the precursor flow rates, and the growth interruption at the interfaces, we found that, while arsenic and phosphorus carry over have some effect on the formation of a low-bandgap InGaAsP quaternary layer at the interfaces, the In surface segregation seems to play an important role in the formation of the interface quaternary layer. Evidence of this indium segregation comes from x-ray and photoluminescence studies of samples grown at different temperatures. These studies show that the formation of an interfacial layer is more prominent when the growth temperature is higher. Growing a thin (∼1 monolayer thick) GaP intentional interfacial layer on top of the InGaP before the growth of the GaAs layer at the P→As transition effectively suppresses the formation of the low-bandgap unintentional interface layer. On the other hand, the growth of a thin GaAsP (or GaP) layer before the growth of the InGaP layer, at the As→P transition increases the formation of a low-bandgap interfacial layer. This nonequivalent effect of a GaP layer at the two interfaces on the PL properties is discussed.
引用
收藏
页码:705 / 710
页数:5
相关论文
共 61 条
  • [1] Yang Q.(1999)undefined Appl. Phys. Lett. 75 1101-1101
  • [2] Kellogg D.A.(1988)undefined J. Appl. Phys. 63 1241-1241
  • [3] Lin C.(2000)undefined Appl. Phys. Lett. 76 2379-2379
  • [4] Stillman G.E.(1995)undefined J. Appl. Phys. 78 5387-5387
  • [5] Holonyak N.(1994)undefined J. Cryst. Growth 145 786-786
  • [6] Bour D.P.(1991)undefined Appl. Phys. Lett. 59 1034-1034
  • [7] Shealy J.R.(2000)undefined J. Cryst. Growth 212 21-21
  • [8] McKernan S.(2004)undefined Semicond. Sci. Technol. 19 680-680
  • [9] Kwon Y.H.(2004)undefined Appl. Phys. Lett. 84 227-227
  • [10] Jeong W.G.(1997)undefined J. Appl. Phys. 81 771-771