TiMEG: an integrative statistical method for partially missing multi-omics data

被引:0
|
作者
Sarmistha Das
Indranil Mukhopadhyay
机构
[1] Indian Statistical Institute,Human Genetics Unit
[2] St. Jude Children’s Research Hospital,Department of Biostatistics
来源
Scientific Reports | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Multi-omics data integration is widely used to understand the genetic architecture of disease. In multi-omics association analysis, data collected on multiple omics for the same set of individuals are immensely important for biomarker identification. But when the sample size of such data is limited, the presence of partially missing individual-level observations poses a major challenge in data integration. More often, genotype data are available for all individuals under study but gene expression and/or methylation information are missing for different subsets of those individuals. Here, we develop a statistical model TiMEG, for the identification of disease-associated biomarkers in a case–control paradigm by integrating the above-mentioned data types, especially, in presence of missing omics data. Based on a likelihood approach, TiMEG exploits the inter-relationship among multiple omics data to capture weaker signals, that remain unidentified in single-omic analysis or common imputation-based methods. Its application on a real tuberous sclerosis dataset identified functionally relevant genes in the disease pathway.
引用
收藏
相关论文
共 50 条
  • [21] Integrative Multi-Omics in Biomedical Research
    Hill, Michelle M.
    Gerner, Christopher
    BIOMOLECULES, 2021, 11 (10)
  • [22] Integrative Multi-Omics Through Bioinformatics
    Goh, Hoe-Han
    OMICS APPLICATIONS FOR SYSTEMS BIOLOGY, 2018, 1102 : 69 - 80
  • [23] Editorial: Statistical and Computational Methods for Microbiome Multi-Omics Data
    Mallick, Himel
    Bucci, Vanni
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11
  • [24] Integrative Sufficient Dimension Reduction Methods for Multi-Omics Data Analysis
    Jain, Yashita
    Ding, Shanshan
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 616 - 616
  • [25] Deep structure integrative representation of multi-omics data for cancer subtyping
    Yang, Bo
    Yang, Yan
    Su, Xueping
    BIOINFORMATICS, 2022,
  • [26] Deep structure integrative representation of multi-omics data for cancer subtyping
    Yang, Bo
    Yang, Yan
    Su, Xueping
    BIOINFORMATICS, 2022, 38 (13) : 3337 - 3342
  • [27] trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data
    Ou, Jianhong
    Zhu, Lihua Julie
    NATURE METHODS, 2019, 16 (06) : 453 - 454
  • [28] A pan-cancer integrative pathway analysis of multi-omics data
    Henry Linder
    Yuping Zhang
    Quantitative Biology, 2020, 8 (02) : 130 - 142
  • [29] Perspectives of using Cloud computing in integrative analysis of multi-omics data
    Augustyn, Dariusz R.
    Wycislik, Lukasz
    Mrozek, Dariusz
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (04) : 198 - 206
  • [30] Integration of multi-omics data for integrative gene regulatory network inference
    Zarayeneh, Neda
    Ko, Euiseong
    Oh, Jung Hun
    Suh, Sang
    Liu, Chunyu
    Gao, Jean
    Kim, Donghyun
    Kang, Mingon
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 18 (03) : 223 - 239