On the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varpi_n$$\end{document}-related elements in the stable homotopy groups of spheres

被引:0
作者
Xiugui Liu
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
关键词
Stable homotopy groups of spheres; Adams spectral sequence; Toda-Smith spectrum; May spectral sequence; Primary 55Q45; Secondary 55T15;
D O I
10.1007/s00013-008-2720-y
中图分类号
学科分类号
摘要
In this paper, we prove the existence of two nontrivial families of homotopy elements \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta_{1} \varpi_{n}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_{s}+3\varpi_n$$\end{document} in the stable homotopy groups of spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi_{*}$$\end{document} (S), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varpi_n \in \pi_{q (p^{n}+2p+1)-3} (S)$$\end{document} was constructed by X. G. Liu, p is a prime number greater than five, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq 4, 0 \leq s < p–4, q = 2 (p-1)$$\end{document}. The elementary method of proof is by explicit combinatorial analysis of the May spectral sequence.
引用
收藏
页码:471 / 480
页数:9
相关论文
empty
未找到相关数据