Feynman-Diagrammatic Description of the Asymptotics of the Time Evolution Operator in Quantum Mechanics

被引:0
作者
Theo Johnson-Freyd
机构
[1] University of California,
来源
Letters in Mathematical Physics | 2010年 / 94卷
关键词
81T18; 81S40; 81Q15; quantum mechanics; Feynman diagrams; formal integrals; path integrals; semiclassical asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the “Feynman diagram” approach to nonrelativistic quantum mechanics on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, with magnetic and potential terms. In particular, for each classical path γ connecting points q0 and q1 in time t, we define a formal power series Vγ(t, q0, q1) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbar}$$\end{document}, given combinatorially by a sum of diagrams that each represent finite-dimensional convergent integrals. We prove that exp(Vγ) satisfies Schrödinger’s equation, and explain in what sense the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t \to 0}$$\end{document} limit approaches the δ distribution. As such, our construction gives explicitly the full \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbar\to 0}$$\end{document} asymptotics of the fundamental solution to Schrödinger’s equation in terms of solutions to the corresponding classical system. These results justify the heuristic expansion of Feynman’s path integral in diagrams.
引用
收藏
页码:123 / 149
页数:26
相关论文
共 12 条
  • [1] Albeverio S.(1977)Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics, I Invent. Math. 40 59-106
  • [2] Höegh-Krohn R.(1976)The semiclassical expansion Ann. Phys. 97 367-399
  • [3] DeWitt-Morette C.(1982)Quantum mechanics of H-atom from path integrals Fortschr. Phys. 30 401-435
  • [4] Duru I.H.(1948)Space–time approach to non-relativistic quantum mechanics Rev. Mod. Phys. 20 367-387
  • [5] Kleinert H.(1984)Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians Phys. Rev. Lett. 52 1161-1164
  • [6] Feynman R.P.(2002)Integrals over products of distributions from perturbation expansions of path integrals in curved space Int. J. Mod. Phys. A 17 2019-2050
  • [7] Klauder J.R.(1994)Perturbative renormalization in quantum mechanics Phys. Lett. B 328 113-118
  • [8] Daubechies I.(undefined)undefined undefined undefined undefined-undefined
  • [9] Kleinert H.(undefined)undefined undefined undefined undefined-undefined
  • [10] Chervyakov A.(undefined)undefined undefined undefined undefined-undefined