Keplerian periodic orbits in the isosceles problem

被引:0
作者
Martínez Alfaro
C. Chiralt Monleón
机构
[1] Universitat de Vàlencia,Department Matemàtica Aplicada, Facultat de Matemàtiques
[2] Universitat Jaume I,Department Matemàtiques
来源
Celestial Mechanics and Dynamical Astronomy | 1999年 / 75卷
关键词
isosceles three-body problem; periodic orbits; analytic continuation;
D O I
暂无
中图分类号
学科分类号
摘要
The planar isosceles three-body problem where the two symmetric bodies have small masses is considered as a perturbation of the Kepler problem. We prove that the circular orbits can be continued to saddle orbits of the Isosceles problem. This continuation is not possible in the elliptic case. Their perturbed orbits tend to a continued circular one or approach a triple collision. The basic tool used is the study of the Poincaré maps associated with the periodic solutions.
引用
收藏
页码:17 / 27
页数:10
相关论文
共 7 条
  • [1] Broucke R.(1979)On the isosceles triangle configuration in the planar general three-body problem Astron. and Astrophys. 73 303-313
  • [2] Devaney R.(1980)Triple collision in the planar isosceles Three-Body Problem Invent. Math. 60 249-267
  • [3] Moeckel R.(1981)Orbits of the three-body problem which pass infinitely close to triple collision Amer. J. Math. 103 1323-1341
  • [4] Simó C.(1998)Qualitative study of the planar isosceles three-body problem Celestial Mechanics 41 179-251
  • [5] Martínez Y. R.(1998)Order and chaos in the planar isosceles three-body problem Chaos 8 475-494
  • [6] Zare K.(undefined)undefined undefined undefined undefined-undefined
  • [7] Chesley S.(undefined)undefined undefined undefined undefined-undefined