Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds

被引:0
作者
Zhenghan Shen
Pan Zhang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
[2] Sun Yat-sen University,School of Mathematics
来源
Communications in Mathematics and Statistics | 2020年 / 8卷
关键词
-Hermitian–Einstein equation; Approximate ; -Hermitian–Einstein structure; Semi-stability; Holomorphic filtration; Gauduchon manifold; 53C07; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is twofold. We first solve the Dirichlet problem for τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Hermitian–Einstein equations on holomorphic filtrations over compact Hermitian manifolds. Secondly, by using Uhlenbeck–Yau’s continuity method, we prove the existence of approximate τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Hermitian–Einstein structure on holomorphic filtrations over closed Gauduchon manifolds.
引用
收藏
页码:219 / 237
页数:18
相关论文
共 52 条
[1]  
Álvarez-Cónsul L(2001)Dimensional reduction, Sl(2, Int. J. Math. 12 159-201
[2]  
García-Prada L(2003))-equivariant bundles and stable holomorphic chains Commun. Math. Phys. 238 1-33
[3]  
Álvarez-Cónsul L(1996)Hitchin–Kobayashi correspondence, quivers, and vortices J. Lond. Math. Soc. 53 302-316
[4]  
García-Prada L(2009)On parabolic bundles over a complex surface Int. J. Math. 20 541-556
[5]  
Biquard O(2016)Yang–Mills equation for stable Higgs sheaves Asian J. Math. 20 989-1000
[6]  
Biswas I(1990)Yang–Mills–Higgs connections on Calabi–Yau manifolds Commun. Math. Phys. 135 1-17
[7]  
Schumacher G(2007)Vortices in holomorphic line bundles over closed Kähler manifolds J. Reine Angew. Math. 612 59-79
[8]  
Biswas I(2011)Metrics on semistable and numerically effective Higgs bundles Adv. Math. 226 3655-3676
[9]  
Bruzzo U(2014)Semistable and numerically effective principal (Higgs) bundles Int. J. Geom. Methods Mod. Phys. 11 1460015-648
[10]  
Graña Otero B(1988)Approximate Hitchin–Kobayashi correspondence for Higgs G-bundles Math. Ann. 280 625-370