Fixed point theorems for generalized contractive mappings in metric spaces

被引:1
|
作者
Petko D. Proinov
机构
[1] University of Plovdiv Paisii Hilendarski,Faculty of Mathematics and Informatics
关键词
Complete metric space; fixed point; Banach contraction principle; Picard iteration; approximation of fixed points; Primary 47H09; 47H10; Secondary 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a self-mapping on a complete metric space (X, d). In this paper, we obtain new fixed point theorems assuming that T satisfies a contractive-type condition of the following form: ψ(d(Tx,Ty))≤φ(d(x,y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \psi (d(Tx,Ty)) \le \varphi (d(x,y)) \end{aligned}$$\end{document}or T satisfies a generalized contractive-type condition of the form ψ(d(Tx,Ty))≤φ(m(x,y)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \psi (d(Tx,Ty)) \le \varphi (m(x,y)), \end{aligned}$$\end{document}where ψ,φ:(0,∞)→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi ,\varphi :(0,\infty ) \rightarrow {\mathbb {R}}}$$\end{document} and m(x, y) is defined by m(x,y)=maxd(x,y),d(x,Tx),d(y,Ty),[d(x,Ty)+d(y,Tx)]/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} m(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), [d(x,Ty)+d(y,Tx)] / 2 \right\} . \end{aligned}$$\end{document}In both cases, the results extend and unify many earlier results. Among the other results, we prove that recent fixed point theorems of Wardowski (2012) and Jleli and Samet (2014) are equivalent to a special case of the well-known fixed point theorem of Skof (1977).
引用
收藏
相关论文
共 50 条
  • [1] Fixed point theorems for generalized contractive mappings in metric spaces
    Proinov, Petko D.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (01)
  • [2] Fixed point theorems for partial α-φ contractive mappings in generalized metric spaces
    Ninsri, Aphinat
    Sintunavarat, Wutiphol
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 83 - 91
  • [3] Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces
    Mishra, Lakshmi Narayan
    Tiwari, Shiv Kant
    Mishra, Vishnu Narayan
    Khan, Idrees A.
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [4] ON THE FIXED POINT THEOREMS FOR GENERALIZED WEAKLY CONTRACTIVE MAPPINGS ON PARTIAL METRIC SPACES
    Chi, K. P.
    Karapinar, E.
    Thanh, T. D.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (02) : 369 - 381
  • [5] Some fixed point theorems for generalized contractive mappings in complete metric spaces
    Hussain, Nawab
    Parvaneh, Vahid
    Samet, Bessem
    Vetro, Calogero
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [6] Fixed point theorems for generalized weakly contractive mappings in metric spaces with applications
    Cho S.
    Fixed Point Theory and Applications, 2018 (1)
  • [7] Some fixed point theorems for generalized contractive mappings in complete metric spaces
    Nawab Hussain
    Vahid Parvaneh
    Bessem Samet
    Calogero Vetro
    Fixed Point Theory and Applications, 2015
  • [8] Fixed point of contractive mappings in generalized metric spaces
    Das, Pratulananda
    Dey, Lakshmi Kanta
    MATHEMATICA SLOVACA, 2009, 59 (04) : 499 - 504
  • [9] Fixed point theorems for α-ψ-quasi contractive mappings in metric spaces
    Cho, Seong-Hoon
    Bae, Jong-Sook
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [10] Fixed Point Theorems for ψ-Contractive Mappings in Ordered Metric Spaces
    Chen, Chi-Ming
    JOURNAL OF APPLIED MATHEMATICS, 2012,