Fixed point theorems for generalized contractive mappings in metric spaces

被引:1
作者
Petko D. Proinov
机构
[1] University of Plovdiv Paisii Hilendarski,Faculty of Mathematics and Informatics
关键词
Complete metric space; fixed point; Banach contraction principle; Picard iteration; approximation of fixed points; Primary 47H09; 47H10; Secondary 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a self-mapping on a complete metric space (X, d). In this paper, we obtain new fixed point theorems assuming that T satisfies a contractive-type condition of the following form: ψ(d(Tx,Ty))≤φ(d(x,y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \psi (d(Tx,Ty)) \le \varphi (d(x,y)) \end{aligned}$$\end{document}or T satisfies a generalized contractive-type condition of the form ψ(d(Tx,Ty))≤φ(m(x,y)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \psi (d(Tx,Ty)) \le \varphi (m(x,y)), \end{aligned}$$\end{document}where ψ,φ:(0,∞)→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi ,\varphi :(0,\infty ) \rightarrow {\mathbb {R}}}$$\end{document} and m(x, y) is defined by m(x,y)=maxd(x,y),d(x,Tx),d(y,Ty),[d(x,Ty)+d(y,Tx)]/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} m(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), [d(x,Ty)+d(y,Tx)] / 2 \right\} . \end{aligned}$$\end{document}In both cases, the results extend and unify many earlier results. Among the other results, we prove that recent fixed point theorems of Wardowski (2012) and Jleli and Samet (2014) are equivalent to a special case of the well-known fixed point theorem of Skof (1977).
引用
收藏
相关论文
共 71 条
  • [1] Ahmad J(2017)Fixed point results for generalized J. Nonlinear Sci. Appl. 10 2350-2358
  • [2] Al-Mazrooei AE(2013)-contractions Miskolc Math. Notes 14 11-17
  • [3] Cho YJ(2011)A fixed point theorem by altering distance technique in complete metric spaces Thai J. Math. 9 1-10
  • [4] Yang YO(1922)A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces Fund. Math. 3 133-181
  • [5] Amini-Harandi A(1969)Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales Proc. Am. Math. Soc. 20 458-464
  • [6] Petruşel A(1968)On nonlinear contractions Indag. Math. 30 27-35
  • [7] Babu VR(1966)On the convergence of successive approximations for nonlinear functional equations Bull. Am. Math. Soc. 72 571-576
  • [8] Sailaja PD(1971)The solution by iteration of nonlinear functional equation in Banach spaces Publ. Inst. Math. 26 19-26
  • [9] Banach S(2009)Generalized contractions and fixed-point theorems Appl. Math. Lett. 22 1896-1900
  • [10] Boyd DW(2018)Common fixed point for generalized Indian J. Math. 60 141-152