Sums of infinite series involving the Riemann zeta function II

被引:0
|
作者
Raymond Mortini
Rudolf Rupp
机构
[1] Université de Lorraine,Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS
[2] Université du Luxembourg,Département de Mathématiques
[3] Technische Hochschule Nürnberg,Fakultät für Angewandte Mathematik, Physik und Allgemeinwissenschaften
[4] Georg Simon Ohm,undefined
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Riemann zeta function; Computation of sums of series; Primary 30B99; Secondary 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
We determine for all natural numbers p the exact value of the converging series ∑n=1∞np(ζ(2n)-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum _{n=1}^\infty n^p (\zeta (2n)-1)}$$\end{document}. Two recursive formulas are given, too. The cases p=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1,2,3$$\end{document} are done right at the beginning to illustrate the method used to derive these formulas.
引用
收藏
页码:929 / 940
页数:11
相关论文
共 50 条
  • [41] New Results Involving Riemann Zeta Function Using Its Distributional Representation
    Tassaddiq, Asifa
    Srivastava, Rekha
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [42] Short series over simple zeros of the Riemann zeta-function
    Slezeviciene, R
    Steuding, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (01): : 129 - 132
  • [43] Further Apéry-Like Series for Riemann Zeta Function
    Wenchang Chu
    Mathematical Notes, 2021, 109 : 136 - 146
  • [44] Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function
    Laurincikas, Antanas
    Siauciunas, Darius
    MATHEMATICS, 2021, 9 (10)
  • [45] Multi-step prediction of zero series and gap series of Riemann zeta function
    Chen, Guohai
    Guo, Guiqiang
    Yang, Kaisheng
    Yang, Dixiong
    RESULTS IN PHYSICS, 2021, 27
  • [46] MULTINOMIAL COEFFICIENTS, MULTIPLE ZETA VALUES, EULER SUMS AND SERIES OF POWERS OF THE HURWITZ ZETA FUNCTION
    Kijaczko, Michal
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 62 (02) : 227 - 245
  • [47] The phase of the Riemann zeta function
    Khare, A
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 537 - 553
  • [48] A Multicomplex Riemann Zeta Function
    Reid, Frederick Lyall
    Van Gorder, Robert A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 237 - 251
  • [49] A Multicomplex Riemann Zeta Function
    Frederick Lyall Reid
    Robert A. Van Gorder
    Advances in Applied Clifford Algebras, 2013, 23 : 237 - 251
  • [50] Identities for the Riemann zeta function
    Rubinstein, Michael O.
    RAMANUJAN JOURNAL, 2012, 27 (01) : 29 - 42