Sums of infinite series involving the Riemann zeta function II
被引:0
|
作者:
Raymond Mortini
论文数: 0引用数: 0
h-index: 0
机构:Université de Lorraine,Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS
Raymond Mortini
Rudolf Rupp
论文数: 0引用数: 0
h-index: 0
机构:Université de Lorraine,Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS
Rudolf Rupp
机构:
[1] Université de Lorraine,Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS
[2] Université du Luxembourg,Département de Mathématiques
[3] Technische Hochschule Nürnberg,Fakultät für Angewandte Mathematik, Physik und Allgemeinwissenschaften
[4] Georg Simon Ohm,undefined
来源:
Rendiconti del Circolo Matematico di Palermo Series 2
|
2024年
/
73卷
关键词:
Riemann zeta function;
Computation of sums of series;
Primary 30B99;
Secondary 11M06;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We determine for all natural numbers p the exact value of the converging series ∑n=1∞np(ζ(2n)-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\sum _{n=1}^\infty n^p (\zeta (2n)-1)}$$\end{document}. Two recursive formulas are given, too. The cases p=1,2,3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=1,2,3$$\end{document} are done right at the beginning to illustrate the method used to derive these formulas.
机构:
Zhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China
Univ Salento, Dept Math & Phys, POB 193, I-73100 Lecce, ItalyZhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China