Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem

被引:0
作者
Desamparados Fernández-Ternero
Enrique Macías-Virgós
Nicholas A. Scoville
José Antonio Vilches
机构
[1] Universidad de Sevilla,Departamento de Geometría y Topología
[2] Universidade de Santiago de Compostela,Departamento de Matemáticas
[3] Ursinus College,Department of Mathematics and Computer Science
来源
Discrete & Computational Geometry | 2020年 / 63卷
关键词
Simplicial Lusternik–Schnirelmann category; Strong collapsibility; Discrete Morse theory; Strong homotopy type; 55U05; 57M15; 55M30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a discrete version of the Lusternik–Schnirelmann (L–S) theorem for discrete Morse functions and the recently introduced simplicial L–S category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian’s sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial L–S category of K.
引用
收藏
页码:607 / 623
页数:16
相关论文
共 27 条
  • [1] Aaronson S(2013)Lusternik–Schnirelmann for simplicial complexes Ill. J. Math. 57 743-753
  • [2] Scoville NA(2012)Strong homotopy types, nerves and collapses Discrete Comput. Geom. 47 301-328
  • [3] Barmak JA(2014)Irreducible triangulations of the Möbius band Bul. Acad. Ştiinţe Repub. Mold. Mat. 2014 44-50
  • [4] Minian EG(2016)Discrete Morse theory for computing cellular sheaf cohomology Found. Comput. Math. 16 875-897
  • [5] Chávez M-J(2019)Simplicial Lusternik–Schnirelmann category Publ. Mat. 63 265-293
  • [6] Lawrencenko S(2015)Lusternik–Schnirelmann category of simplicial complexes and finite spaces Topol. Appl. 194 37-50
  • [7] Quintero A(1998)Morse Theory for cell complexes Adv. Math. 134 90-145
  • [8] Villar M-T(1966)Lusternik–Schnirelmann theory on Banach manifolds Topology 5 115-132
  • [9] Curry J(2015)Membrane parallelism for discrete Morse theory applied to digital images Appl. Algebra Eng. Commun. Comput. 26 49-71
  • [10] Ghrist R(2017)On the Lusternik–Schnirelmann category of a simplicial map Topol. Appl. 216 116-128