Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations

被引:0
作者
Olga Turanova
机构
[1] University of Chicago,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 54卷
关键词
Fully nonlinear elliptic equations; Finite difference methods; 35J60; 65N06; 35B05;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain an error estimate between viscosity solutions and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-viscosity solutions of nonhomogeneous fully nonlinear uniformly elliptic equations. The main assumption, besides uniform ellipticity, is that the nonlinearity is Lipschitz-continuous in space with linear growth in the Hessian. We also establish a rate of convergence for monotone and consistent finite difference approximation schemes for such equations.
引用
收藏
页码:2939 / 2983
页数:44
相关论文
共 50 条
[41]   Liouville type theorems of fully nonlinear elliptic equations in half spaces [J].
Li, Dongsheng ;
Liang, Lichun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 233
[42]   A GAME INTERPRETATION OF THE NEUMANN PROBLEM FOR FULLY NONLINEAR PARABOLIC AND ELLIPTIC EQUATIONS [J].
Daniel, Jean-Paul .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (04) :1109-1165
[43]   A qualitative Phragmen-Lindelof theorem for fully nonlinear elliptic equations [J].
Dolcetta, I. Capuzzo ;
Vitolo, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :578-592
[44]   CLASSIFICATION OF POSITIVE SOLUTIONS FOR FULLY NONLINEAR ELLIPTIC EQUATIONS IN UNBOUNDED CYLINDERS [J].
Wang, Lidan ;
Wang, Lihe ;
Zhou, Chunqin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) :1241-1261
[45]   Harnack inequalities for supersolutions of fully nonlinear elliptic difference and differential equations [J].
Hamamuki, Nao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) :184-199
[46]   Entire solutions of fully nonlinear elliptic equations with a superlinear gradient term [J].
Galise, G. ;
Koike, S. ;
Ley, O. ;
Vitolo, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (01) :194-210
[47]   Fully nonlinear elliptic equations with gradient terms on compact almost Hermitian manifolds [J].
Liding Huang ;
Jiaogen Zhang .
Mathematische Zeitschrift, 2023, 303
[48]   Fully Nonlinear Elliptic Equations on Hermitian Manifolds for Symmetric Functions of Partial Laplacians [J].
Mathew George ;
Bo Guan ;
Chunhui Qiu .
The Journal of Geometric Analysis, 2022, 32
[49]   A maximum principle for some fully nonlinear elliptic equations with applications to Weingarten hypersurfaces [J].
Barbu, Luminita ;
Enache, Cristian .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (12) :1725-1736
[50]   A quantitative constant rank theorem for quasiconcave solutions to fully nonlinear elliptic equations [J].
Sun, Fanrong ;
Xu, Lu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 :685-705