Order quasisymmetric functions distinguish rooted trees

被引:0
作者
Takahiro Hasebe
Shuhei Tsujie
机构
[1] Hokkaido University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2017年 / 46卷
关键词
Rooted tree; -partition; Quasisymmetric function; Overlapping shuffle; N-free; 06A11; 06A07; 05A05; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Richard P. Stanley conjectured that finite trees can be distinguished by their chromatic symmetric functions. In this paper, we prove an analogous statement for posets: Finite rooted trees can be distinguished by their order quasisymmetric functions.
引用
收藏
页码:499 / 515
页数:16
相关论文
共 12 条
  • [1] Aliste-Prieto J(2014)Proper caterpillars are distinguished by their chromatic symmetric function Discret. Math. 315 158-164
  • [2] Zamora J(2001)The algebra of quasi-symmetric functions is free over the integers Adv. Math. 164 283-300
  • [3] Hazewinkel M(2008)On distinguishing trees by their chromatic symmetric functions J. Comb. Theory Ser. A 115 237-253
  • [4] Martin JL(2014)Equality of Ann. Comb. 18 489-514
  • [5] Morin M(2014)-partition generating functions Discret. Math. 320 1-14
  • [6] Wagner JD(1968)Graphs with equal chromatic symmetric functions J. Comb. Theory 4 52-71
  • [7] McNamara PRW(1995)An introduction to chromatic polynomials Adv. Math. 111 166-194
  • [8] Ward RE(undefined)A symmetric function generalization of the chromatic polynomial of a graph undefined undefined undefined-undefined
  • [9] Orellana R(undefined)undefined undefined undefined undefined-undefined
  • [10] Scott G(undefined)undefined undefined undefined undefined-undefined