Nilpotent Lie groups and hyperbolic automorphisms

被引:0
作者
Manoj Choudhuri
C. R. E. Raja
机构
[1] Institute of Infrastructure Technology Research and Management,Statistics and Mathematics Unit
[2] Indian Statistical Institute Bangalore Center,undefined
来源
Archiv der Mathematik | 2020年 / 115卷
关键词
Nilpotent Lie groups; Hyperbolic automorphisms; Algebraic groups; Primary 22E15; Secondary 22D05; 22D45; 37A25; 37D99;
D O I
暂无
中图分类号
学科分类号
摘要
A connected Lie group admitting an expansive automorphism is known to be nilpotent, but not all nilpotent Lie groups admit expansive automorphisms. In this article, we find sufficient conditions for a class of nilpotent Lie groups to admit expansive automorphisms.
引用
收藏
页码:247 / 255
页数:8
相关论文
共 20 条
  • [1] Borel A(1960)Density properties for certain subgroups of semi-simple groups without compact components Ann. Math. 2 179-188
  • [2] Dixmier J(1957)Derivations of nilpotent Lie algebras Proc. Amer. Math. Soc. 8 155-158
  • [3] Lister WG(1966)Expansive transformation semigroups of endomorphisms Fund. Math. 59 313-321
  • [4] Eisenberg M(1966)A note on positively expansive endomorphisms Math. Scand. 19 217-218
  • [5] Eisenberg M(2017)Expansive automorphisms of totally disconnected, locally compact groups J. Group Theory 20 589-619
  • [6] Glöckner H(2010)Classification of the simple factors appearing in composition series of totally disconnected contraction groups J. Reine Angew. Math. 643 141-169
  • [7] Raja CRE(1987)Expansive dynamics on zero-dimensional groups Ergod. Theory Dyn. Syst. 7 249-261
  • [8] Glöckner H(1970)On expansive transformation groups Trans. Amer. Math. Soc. 150 131-138
  • [9] Willis GA(2007)Examples of Anosov Lie algebras Discrete Contin. Dyn. Syst. 18 39-52
  • [10] Kitchens BP(1972)Cartan subgroups and lattices in semi-simple groups Ann. Math. 2 296-317