The Virtual Ventricular Wall: A Tool for Exploring Cardiac Propagation and Arrhythmogenesis

被引:0
|
作者
Arun V. Holden
Oleg V. Aslanidi
Alan P. Benson
Richard H. Clayton
Graeme Halley
Pan Li
Wing Chiu Tong
机构
[1] University of Leeds,Computational Biology Laboratory, Institute of Membrane and Systems Biology
[2] University of Sheffield,Department of Computer Science
来源
Journal of Biological Physics | 2006年 / 32卷
关键词
cardiac arrhythmias; Diffusion Tensor MRI; Ventricular fibrillation (VF); ventricular wall; virtual tissues;
D O I
暂无
中图分类号
学科分类号
摘要
Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical propagation processes and arrhythmias within the virtual heart. We use virtual tissues to study and visualise the effects of patho- and physiological conditions, and pharmacological interventions on transmural propagation in the virtual ventricular walls. Class III drug actions are quantitatively explained by changes induced in the transmural dispersion of action potential duration. We illustrate the automated construction of a virtual anisotropic ventricle from Diffusion Tensor MRI for individual hearts, and use it to explore mechanisms leading to ventricular fibrillation. The virtual ventricular wall provides an effective tool for exploring, evaluating and visualising processes during the initiation and maintenance of ventricular arrhythmias.
引用
收藏
页码:355 / 368
页数:13
相关论文
共 50 条
  • [1] The virtual ventricular wall: A tool for exploring cardiac propagation and arrhythmogenesis
    Holden, Arun V.
    Aslanidi, Oleg V.
    Benson, Alan P.
    Clayton, Richard H.
    Halley, Graeme
    Li, Pan
    Tong, Wing Chiu
    JOURNAL OF BIOLOGICAL PHYSICS, 2006, 32 (3-4) : 355 - 368
  • [2] The canine virtual ventricular wall: A platform for dissecting pharmacological effects on propagation and arrhythmogenesis
    Benson, Alan P.
    Aslanidi, Oleg V.
    Zhang, Henggui
    Holden, Arun V.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2008, 96 (1-3): : 187 - 208
  • [3] Mechanisms of cardiac impulse propagation and arrhythmogenesis
    Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Japan
    Trans. Jpn. Soc. Med. Biol. Eng., 3 (123-129):
  • [4] Discontinuous propagation of the cardiac impulse and arrhythmogenesis
    Kléber, AG
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1999, 10 (07) : 1025 - 1027
  • [5] Virtual ventricular wall: Effects of pathophysiology and pharmacology on transmural propagation
    Aslanidi, OV
    Lambert, JL
    Srinivasan, NT
    Holden, AV
    FUNCTIONAL IMAGING AND MODELING OF HEART, PROCEEDINGS, 2005, 3504 : 162 - 171
  • [6] Role of the intercalated disc in cardiac propagation and arrhythmogenesis
    Kleber, Andre G.
    Saffitz, Jeffrey E.
    FRONTIERS IN PHYSIOLOGY, 2014, 5
  • [7] Role of Cardiac Microstructure Variability on Ventricular Arrhythmogenesis
    Whittaker, Dominic G.
    Benson, Alan P.
    Teh, Irvin
    Schneider, Juergen E.
    Colman, Michael A.
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [8] Cardiac myocyte-nonmyocyte electrotonic coupling: Implications for ventricular arrhythmogenesis
    Kohl, Peter
    Camelliti, Patrizia
    HEART RHYTHM, 2007, 4 (02) : 233 - 235
  • [9] Electrical Remodeling of Cardiac Parasympathetic Postganglionic Neurons and Ventricular Arrhythmogenesis in Diabetes
    Zhang, Dongze
    Tu, Huiyin
    Hu, Wenfeng
    Wadman, Michael C.
    Li, Yulong
    CIRCULATION, 2019, 140
  • [10] Differences in Left Versus Right Ventricular Electrophysiological Properties in Cardiac Dysfunction and Arrhythmogenesis
    Molina, Cristina E.
    Heijman, Jordi
    Dobrev, Dobromir
    ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW, 2016, 5 (01) : 14 - 19