Eisenstein Series and String Thresholds

被引:0
作者
N. A. Obers
B. Pioline
机构
[1] Nordita and Niels Bohr Institute,
[2] Blegdamsvej 17,undefined
[3] 2100 Copenhagen,undefined
[4] Denmark.¶E-mail: obers@nordita.dk,undefined
[5] Centre de Physique Théorique,undefined
[6] Ecole Polytechnique,undefined
[7] Unité mixte CNRS UMR 7644,undefined
[8] 91128 Palaiseau,undefined
[9] France. E-mail: pioline@cpht.polytechnique.fr,undefined
来源
Communications in Mathematical Physics | 2000年 / 209卷
关键词
Invariant Mass; Symmetric Space; Fundamental Domain; Eisenstein Series; Compact Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the relevance of Eisenstein series for representing certain G(ℤ)-invariant string theory amplitudes which receive corrections from BPS states only. G(ℤ) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(ℤ), SO(d,d,(ℤ) or Ed+1(d+1)((ℤ) respectively. Using G(ℤ)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(ℝ) of non-compact type, with K the maximal compact subgroup of G(ℝ), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D≥ 4 and D≥ 6 respectively.
引用
收藏
页码:275 / 324
页数:49
相关论文
empty
未找到相关数据