Novel reconciliation protocol based on spinal code for continuous-variable quantum key distribution

被引:0
|
作者
Xuan Wen
Qiong Li
Haokun Mao
Yi Luo
Bingze Yan
Furong Huang
机构
[1] Harbin Institute of Technology,Department of Computer Science and Technology
[2] Harbin Institute of Technology,School of International Studies
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Continuous-variable quantum key distribution; Adaptive reconciliation; Spinal code; Rateless code; Low-density parity check code; Reconciliation efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Reconciliation is a crucial procedure in post-processing of continuous-variable quantum key distribution (CV-QKD) system, which is used to make two distant legitimate parties share identical corrected keys. The adaptive reconciliation is necessary for practical systems to cope with the variable channel. Many researchers adopt fixed-rate error correction codes to implement adaptive reconciliation, such as the punctured LDPC code; however such protocol can achieve high efficiency only in a small range of signal-to-noise ratios (SNRs). In this paper, the spinal-based rateless reconciliation protocol for CV-QKD is first proposed. The proposed adaptive reconciliation protocol can achieve high efficiency in a much larger range of SNRs. Because the protocol we propose uses the code with short length and simple encoding/decoding structure, the design and implementation complexities of our protocol are greatly decreased. Meanwhile, its parallel attribute makes it suitable for hardware implementation, which means it has the potential of achieving high-throughput reconciliation. Moreover, the security of proposed protocol is investigated and proved. Experimental results show that the reconciliation efficiency of the spinal-based protocol maintains around 95%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$95\%$$\end{document} in a larger SNR range (0,0.5), and even exceeds 96.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.5\%$$\end{document} at extremely low SNR (≤0.032\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 0.032$$\end{document}) with quite low frame error rate (FER) (≤5.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 5.2\%$$\end{document}). Both the theoretical analysis and experimental results demonstrate that the proposed adaptive reconciliation protocol is a suitable candidate for the long-distance CV-QKD systems.
引用
收藏
相关论文
共 50 条
  • [21] Synchronization Schemes for Continuous-Variable Quantum Key Distribution
    Liu, Changjiang
    Zhao, Yijia
    Zhang, Yichen
    Zheng, Ziyong
    Yu, Song
    INTERNATIONAL CONFERENCE ON OPTOELECTRONICS AND MICROELECTRONICS TECHNOLOGY AND APPLICATION, 2017, 10244
  • [22] Quantum circuit-based modeling of continuous-variable quantum key distribution system
    Mraz, Albert
    Kis, Zsolt
    Imre, Sandor
    Gyongyosi, Laszlo
    Bacsardi, Laszlo
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2017, 45 (07) : 1017 - 1028
  • [23] Parameter Optimization Based BPNN of Atmosphere Continuous-Variable Quantum Key Distribution
    Su, Yu
    Guo, Ying
    Huang, Duan
    ENTROPY, 2019, 21 (09)
  • [24] A continuous-variable quantum key distribution using correlated photons
    Donkor, Eric
    Kumavor, Patrick D.
    QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XIV, 2022, 12093
  • [25] Design of Gaussian modulator for continuous-variable quantum key distribution
    Sun, Xiunan
    Liang, Hao
    OPTICAL ENGINEERING, 2022, 61 (01)
  • [26] Phase Estimation and Compensation for Continuous-Variable Quantum Key Distribution
    Guo, Ying
    Zhou, Zihang
    Wang, Xudong
    Wu, Xiaodong
    Zhang, Ling
    Huang, Duan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (05) : 1613 - 1625
  • [27] Unidimensional continuous-variable quantum key distribution with imperfect detector
    Zhang, Yichen
    Huang, Luyu
    Yu, Song
    Guo, Hong
    AOS AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY (ACOFT) AND AUSTRALIAN CONFERENCE ON OPTICS, LASERS, AND SPECTROSCOPY (ACOLS) 2019, 2019, 11200
  • [28] Implementation of continuous-variable quantum key distribution with discrete modulation
    Hirano, Takuya
    Ichikawa, Tsubasa
    Matsubara, Takuto
    Ono, Motoharu
    Oguri, Yusuke
    Namiki, Ryo
    Kasai, Kenta
    Matsumoto, Ryutaroh
    Tsurumaru, Toyohiro
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02):
  • [29] High Efficiency Continuous-Variable Quantum Key Distribution Based on ATSC 3.0 LDPC Codes
    Zhang, Kun
    Jiang, Xue-Qin
    Feng, Yan
    Qiu, Runhe
    Bai, Enjian
    ENTROPY, 2020, 22 (10) : 1 - 13
  • [30] Polarization attack on continuous-variable quantum key distribution system
    Zhao, Yijia
    Zhang, Yichen
    Huang, Yundi
    Yu, Song
    Guo, Hong
    QUANTUM INFORMATION SCIENCE AND TECHNOLOGY IV, 2018, 10803