Comparative investigation of wire arc additive manufacturing of Al-5%Mg alloy with and without external alternating magnetic field

被引:0
|
作者
Wenyong Zhao
Yanhong Wei
Xujing Zhang
Jicheng Chen
Wenmin Ou
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Material Science and Technology
[2] Nanjing University of Aeronautics and Astronautics,MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology
[3] Changshu Institute of Technology,School of Automotive Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2022年 / 119卷
关键词
Wire arc additive manufacturing; Aluminum alloy; Arc behavior; Deposit morphology; Mechanical properties; External alternating magnetic field;
D O I
暂无
中图分类号
学科分类号
摘要
In order to optimize the fabrication quality, an external longitudinal alternating magnetic field is introduced into the wire arc additive manufacturing (WAAM) system of aluminum alloy in this investigation. The arc behavior, metal transfer, deposit morphology, microstructure, and mechanical properties of WAAM of Al-5%Mg alloy with and without external magnetic field (EMF) are investigated comprehensively and comparatively. Results indicate that the increase of excitation current promotes the dilatation of arc plasma to reduce the heat flux density, broadens the bead width, and decreases the bead height and penetration depth, while the increase of excitation frequency has the opposite effect on those. Furtherly, the spray transfer process which occurs at the beginning of each welding wire motion cycle can be restricted under appropriate excitation current and excitation frequency. Compared with that without EMF, the surface accuracy of thin-wall parts deposited with the EMF of excitation current 2 A and excitation frequency 70 Hz is remarkably improved, whose surface waviness is decreased by 34%. Simultaneously, the secondary phase of Al3Mg2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Al}_{3}{Mg}_{2}$$\end{document} is distributed more uniformly, and the number and dimension of pores of deposit are greatly reduced. The microstructures in the bottom layer and top layer of deposit with EMF get furtherly refined by the electromagnetic stirring, but those in the middle layers and final tensile properties of the deposit are not obviously optimized, which are mainly caused by severe heat accumulation and repeated heating from subsequent deposition, and the nature of non-heat treatment strengthening of Al–Mg alloy.
引用
收藏
页码:2571 / 2587
页数:16
相关论文
共 50 条
  • [21] Mechanical Properties and Microstructural Characteristics of Al–Mg Alloy Cylindrical Component Manufactured by Wire Arc Additive Manufacturing Process
    Bellamkonda Prasanna Nagasai
    Sudersanan Malarvizhi
    Visvalingam Balasubramanian
    Metallography, Microstructure, and Analysis, 2022, 11 : 199 - 211
  • [22] Wire and Arc Additive Manufacturing of High-Strength Al-Zn-Mg Aluminum Alloy
    Fang, Xuewei
    Chen, Guopeng
    Yang, Jiannan
    Xie, Yang
    Huang, Ke
    Lu, Bingheng
    FRONTIERS IN MATERIALS, 2021, 8 (08):
  • [23] Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: Microstructures and mechanical properties
    Dong, Bolun
    Cai, Xiaoyu
    Lin, Sanbao
    Li, Xiaolong
    Fan, Chenglei
    Yang, Chunli
    Sun, Haoran
    ADDITIVE MANUFACTURING, 2020, 36
  • [24] Effect of Mg Content on Microstructure and Properties of Al-Mg Alloy Produced by the Wire Arc Additive Manufacturing Method
    Ren, Lingling
    Gu, Huimin
    Wang, Wei
    Wang, Shuai
    Li, Chengde
    Wang, Zhenbiao
    Zhai, Yuchun
    Ma, Peihua
    MATERIALS, 2019, 12 (24)
  • [25] Comparative study on the microstructure, mechanical properties and fracture mechanism of wire arc additive manufactured Inconel 718 alloy under the assistance of alternating magnetic field
    Huan, Peng-cheng
    Wei, Xia
    Wang, Xiao-nan
    Di, Hong-shuang
    Chen, Yu
    Zhang, Qing-yu
    Chen, Xia-ming
    Shen, Xin-jun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 854
  • [26] Characterisation of Al–Mg Alloy Cylindrical Component Made by Wire Arc Additive Manufacturing Using Cold Metal Transfer Arc Welding Process
    Bellamkonda Prasanna Nagasai
    Sudersanan Malarvizhi
    Visvalingam Balasubramanian
    Transactions of the Indian Institute of Metals, 2022, 75 : 2019 - 2030
  • [27] Insightful investigation for the strengthening mechanisms of Al-Cu alloy prepared by wire arc additive manufacturing
    Jin, Shuoxun
    Li, Yawen
    Shah, Abdul Wahid
    Sun, Jianxin
    Wan, Bingbing
    Xu, Xing
    Li, Wenfang
    Zhang, Lijuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 9394 - 9404
  • [28] Mechanical Properties and Microstructural Characteristics of Al-Mg Alloy Cylindrical Component Manufactured by Wire Arc Additive Manufacturing Process
    Nagasai, Bellamkonda Prasanna
    Malarvizhi, Sudersanan
    Balasubramanian, Visvalingam
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2022, 11 (02) : 199 - 211
  • [29] Microstructure, Mechanical Properties, and Fatigue Resistance of an Al-Mg-Sc-Zr Alloy Fabricated by Wire Arc Additive Manufacturing
    Zeng, Lingpeng
    Chen, Jiqiang
    Li, Tao
    Tuo, Zhanglong
    Zheng, Zuming
    Wu, Hanlin
    METALS, 2025, 15 (01)
  • [30] Microstructure and Mechanical Properties of Al-Cu-Mg-Ag Alloy Fabricated by Hot-wire Arc Additive Manufacturing
    Yan Y.
    Hu J.
    Han Q.
    Guo Y.
    Su J.
    He Z.
    Wang Z.
    Liu C.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (11): : 242 - 252