Ds0∗(2317)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^*_{s0}(2317)$$\end{document} and DK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{DK}$$\end{document} scattering in B decays from BaBar and LHCb data

被引:0
作者
M. Albaladejo
J. Nieves
E. Oset
D. Jido
机构
[1] Centro Mixto CSIC-Universidad de Valencia,Instituto de Física Corpuscular (IFIC), Institutos de Investigación de Paterna
[2] Tokyo Metropolitan University,Department of Physics
来源
The European Physical Journal C | 2016年 / 76卷 / 6期
关键词
Invariant Mass Distribution; LHCb Collaboration; Weak Decay; Belle Collaboration; BaBar Collaboration;
D O I
10.1140/epjc/s10052-016-4144-3
中图分类号
学科分类号
摘要
We study the experimental DK invariant mass spectra of the reactions [inline-graphic not available: see fulltext], B0→D-D0K+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{0} \rightarrow D^{-} D^{0} K^{+}$$\end{document} (measured by the BaBar collaboration) and Bs→π+D¯0K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s \rightarrow \pi ^{+} \bar{D}^{0} K^{-}$$\end{document} (measured by the LHCb collaboration), where an enhancement right above the threshold is seen. We show that this enhancement is due to the presence of Ds0∗(2317)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^*_{s0}(2317)$$\end{document}, which is a DK bound state in the I(JP)=0(0+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(J^P) = 0(0^{+})$$\end{document} sector. We employ a unitarized amplitude with an interaction potential fixed by heavy meson chiral perturbation theory. We obtain a mass MDs0∗=2315-17+12-5+10MeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{D^*_{s0}} = 2315^{+12}_{-17}\ ^{+10}_{-5}\ \text {MeV}$$\end{document}, and we also show, by means of the Weinberg compositeness condition, that the DK component in the wave function of this state is PDK=70-6+4-8+4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{DK} = 70^{+4}_{-6}\ ^{+4}_{-8} \,\%$$\end{document}, where the first (second) error is statistical (systematic).
引用
收藏
相关论文
共 134 条
[1]  
Godfrey S(1985)undefined Phys. Rev. D 32 189-undefined
[2]  
Isgur N(1991)undefined Phys. Rev. D 43 1679-undefined
[3]  
Godfrey S(2007)undefined Phys. Lett. B 650 159-undefined
[4]  
Kokoshi R(2013)undefined Int. J. Mod. Phys. E 22 1330026-undefined
[5]  
Lakhina O(2003)undefined Phys. Rev. D 68 114011-undefined
[6]  
Swanson ES(2003)undefined Phys. Rev. D 68 071501(R)-undefined
[7]  
Segovia J(2003)undefined Phys. Lett. B 569 41-undefined
[8]  
Entem DR(2005)undefined Phys. Lett. B 605 319-undefined
[9]  
Fernandez F(2006)undefined Phys. Rev. D 73 094020-undefined
[10]  
Hernandez E(2003)undefined Phys. Rev. D 68 054006-undefined