An algorithm to generate anisotropic rotating fluids with vanishing viscosity

被引:0
|
作者
Stefano Viaggiu
机构
[1] Università degli Studi Guglielmo Marconi,Dipartimento di Fisica Nucleare, Subnucleare e delle Radiazioni
[2] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[3] Complesso Universitario di Monte S. Angelo,INFN, Sezione di Napoli
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Starting with generic stationary axially symmetric spacetimes depending on two spacelike isotropic orthogonal coordinates x1, x2, we build anisotropic fluids with and without heat flow but with wanishing viscosity. In the first part of the paper, after applying the transformation x1→J(x1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{1}\rightarrow J(x^{1})$\end{document}, x2→F(x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x^{2}\rightarrow F(x^{2})$\end{document} (with J(x1),F(x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ J(x^{1}), F(x^{2})$\end{document} regular functions) to general metrics coefficients gab(x1,x2)→gab(J(x1),F(x2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ g_{ab}(x^{1},x^{2}) \rightarrow g_{ab}(J(x^{1}), F(x^{2}))$\end{document} with Gx1x2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G_{x^{1} x^{2}}=0$\end{document}, being Gab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G_{ab}$\end{document} the Einstein’s tensor, we obtain that G˜x1x2=0→Gx1x2(J(x1),F(x2))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{G}_{x^{1} x^{2}}=0\rightarrow G_{x^{1} x^{2}}(J(x^{1}),F(x^{2}))=0$\end{document}. Therefore, the transformed spacetime is endowed with an energy-momentum tensor Tab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ T_{ab}$\end{document} with expression gabQi+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ g_{ab}Q_{i}+$\end{document}heat term (where gab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ g_{ab}$\end{document} is the metric and {Qi}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \{Q_{i}\}$\end{document}, i=1...4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ i=1\ldots 4$\end{document} are functions depending on the physical parameters of the fluid), i.e. without viscosity and generally with a non-vanishing heat flow. We show that after introducing suitable coordinates, we can obtain interior solutions that can be matched to the Kerr one on spheroids or Cassinian ovals, providing the necessary mathematical machinery. In the second part of the paper we study the equation involving the heat flow and thus we generate anisotropic solutions with vanishing heat flow. In this frame, a class of asymptotically flat solutions with vanishing heat flow and viscosity can be obtained. Finally, some explicit solutions are presented with possible applications to a string with anisotropic source and a dark energy-like equation of state.
引用
收藏
相关论文
共 50 条
  • [1] An algorithm to generate anisotropic rotating fluids with vanishing viscosity
    Viaggiu, Stefano
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (12):
  • [2] Highly rotating fluids with vertical stratification for periodic data and vanishing vertical viscosity
    Scrobogna, Stefano
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 1 - 58
  • [3] Micropolar Fluids with Vanishing Viscosity
    Ortega-Torres, E.
    Villamizar-Roa, E. J.
    Rojas-Medar, M. A.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [4] Fluids with anisotropic viscosity
    Chemin, JY
    Desjardins, B
    Gallagher, I
    Grenier, E
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 315 - 335
  • [5] Ekman Layers of Rotating Fluids with Vanishing Viscosity between Two Infinite Parallel Plates
    Ngo, Van-Sang
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, 2013, 479 : 187 - 207
  • [6] Vanishing Viscosity Method for Incompressible Fluids
    Bellout, Hamid
    Cornea, Emil
    Necasova, Saraka
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2002, 4 (02) : 145 - 154
  • [7] On second grade fluids with vanishing viscosity
    Busuioc, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1241 - 1246
  • [8] Vanishing Viscosity Method for Incompressible Fluids
    H. Bellout
    E. Cornea
    Š. Nečasová
    Journal of Mathematical Fluid Mechanics, 2002, 4 : 145 - 154
  • [9] Rotating Fluids with Small Viscosity
    Ngo, Van-Sang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (10) : 1860 - 1890
  • [10] Sheared active fluids: Thickening, thinning, and vanishing viscosity
    Giomi, Luca
    Liverpool, Tanniemola B.
    Marchetti, M. Cristina
    PHYSICAL REVIEW E, 2010, 81 (05):