Existence of Extremal Solutions for a Nonlinear Fractional q-Difference System

被引:0
作者
Min Jiang
Shouming Zhong
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Fractional ; -difference equations; Boundary value problems; -Laplacian operator; Existence of solutions; 34A08; 34B18; 34A13;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the boundary value problem of a fractional q-difference system with nonlocal integral boundary conditions involving the fractional q-derivatives of the Riemann–Liouville type. Using the properties of the Green function, and monotone iterative method, the extremal solutions were obtained. Finally, an example is presented to illustrate our main results.
引用
收藏
页码:279 / 299
页数:20
相关论文
共 43 条
[1]  
Bai C.(2004)The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations Appl. Math. Comput. 150 611-621
[2]  
Fang J.(2009)Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 1838-1843
[3]  
Ahmad B.(2013)Monotone iterative technique for Riemann–Liouville fractional integro-differential equations with advanced arguments Results Math. 63 1277-1287
[4]  
Nieto J.J.(2005)Positive solutions of a system of non-autonomous fractional differential equations J. Math. Anal. Appl. 302 56-64
[5]  
Liu Z.H.(2008)On the existence of continuous solutions for a singular system of nonlinear fractional differential equations Appl. Math. Comput. 198 445-452
[6]  
Sun J.H.(2009)Boundary value problem for a coupled system of nonlinear fractional differential equations Appl. Math. Lett. 22 64-69
[7]  
Szaántó I.(1908)On Trans. R. Soc. Edinb. 46 253-281
[8]  
Gejji V.D.(1910)-functions and a certain difference operator Q. J. Pure Appl. Math. 41 193-203
[9]  
Salem H.A.H.(1966)On Proc. Edinb. Math. Soc. 15 135-140
[10]  
Su X.(1969)-definite integrals Math. Proc. Camb. Philos. Soc. 66 365-370