Geometry of bi-warped product submanifolds in Sasakian and cosymplectic manifolds

被引:0
作者
Bang-Yen Chen
Siraj Uddin
Azeb Alghanemi
Awatif Al-Jedani
Ion Mihai
机构
[1] Michigan State University,Department of Mathematics
[2] King Abdulaziz University,Department of Mathematics, Faculty of Science
[3] University of Jeddah,Department of Mathematics, Faculty of Science
[4] University of Bucharest,Faculty of Mathematics and Computer Science
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Warped products; Bi-warped products; Pointwise slant submanifolds; Dirichlet energy; Sasakian manifolds; Primary 53C15; Secondary 53C40; 53C42; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
A bi-warped product of the form: M=NT×f1N⊥n1×f2Nθn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N_T \times _{f_1}N^{n_{1}}_\perp \times _{f_2} N^{n_{2}}_\theta $$\end{document} in a contact metric manifold is called a CRS bi-warped product, where NT,N⊥n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_T,\, N^{n_{1}}_\perp $$\end{document} and Nθn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{n_{2}}_\theta $$\end{document} are invariant, anti-invariant and proper pointwise slant submanifolds, respectively. First, we prove that there are no proper CRS bi-warped products other than contact CR-biwarped products in any Sasakian manifold. Then, we prove that if M is a CRS bi-warped product in a cosymplectic manifold, its second fundamental form h satisfies ‖h‖2≥2n1‖∇(lnf1)‖2+2n2(1+2cot2θ)‖∇(lnf2)‖2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert h\Vert ^2\ge 2n_1\Vert \nabla (\ln f_1)\Vert ^2+2n_2(1+2\cot ^2\theta )\Vert \nabla (\ln f_2)\Vert ^2. \end{aligned}$$\end{document}Several applications of this inequality are given. Finally, we provide a non-trivial example of CRS bi-warped product which satisfies the equality case.
引用
收藏
相关论文
共 50 条
  • [1] Geometry of bi-warped product submanifolds in Sasakian and cosymplectic manifolds
    Chen, Bang-Yen
    Uddin, Siraj
    Alghanemi, Azeb
    Al-Jedani, Awatif
    Mihai, Ion
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [2] Geometry of Bi-Warped Product Submanifolds of Nearly Trans-Sasakian Manifolds
    Alkhaldi, Ali H.
    Ali, Akram
    MATHEMATICS, 2021, 9 (08)
  • [3] Geometry of bi-warped product submanifolds of locally product Riemannian manifolds
    Uddin, Siraj
    Mihai, Adela
    Mihai, Ion
    AL-Jedani, Awatif
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [4] Geometry of bi-warped product submanifolds of locally product Riemannian manifolds
    Siraj Uddin
    Adela Mihai
    Ion Mihai
    Awatif AL-Jedani
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [5] Bi-warped product submanifolds of Kenmotsu manifolds and their applications
    Uddin, Siraj
    Alkhaldi, Ali H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (01)
  • [6] Warped Product Bi-Slant Submanifolds of Cosymplectic Manifolds
    Alqahtani, Lamia Saeed
    Stankovic, Mica S.
    Uddin, Siraj
    FILOMAT, 2017, 31 (16) : 5065 - 5071
  • [7] Geometric Inequalities of Bi-Warped Product Submanifolds of Nearly Kenmotsu Manifolds and Their Applications
    Ali, Akram
    Mofarreh, Fatemah
    MATHEMATICS, 2020, 8 (10) : 1 - 16
  • [8] Bi-warped products and applications in locally product Riemannian manifolds
    Al-Jedani, Awatif
    Uddin, Siraj
    Alghanemi, Azeb
    Mihai, Ion
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 358 - 369
  • [9] Another characterization of warped product submanifolds of nearly cosymplectic manifolds
    Alkhaldi, Ali H.
    Kamal, Abid
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02): : 1248 - 1259
  • [10] Pointwise Slant Submanifolds and their Warped Products in Sasakian Manifolds
    Uddin, Siraj
    Alkhaldi, Ali H.
    FILOMAT, 2018, 32 (12) : 4131 - 4142