Asymptotic dimension, property A, and Lipschitz maps

被引:0
作者
M. Cencelj
J. Dydak
A. Vavpetič
机构
[1] Univerza v Ljubljani,Pedagoška Fakulteta in IMFM
[2] University of Tennessee,Fakulteta za Matematiko in Fiziko
[3] Univerza v Ljubljani,undefined
来源
Revista Matemática Complutense | 2013年 / 26卷
关键词
Asymptotic dimension; Coarse geometry; Lipschitz maps; Property A; 54F45; 55M10;
D O I
暂无
中图分类号
学科分类号
摘要
It is well-known that a paracompact space X is of covering dimension n if and only if any map f:X→K from X to a simplicial complex K can be pushed into its n-skeleton K(n). We use the same idea to define dimension in the coarse category. It turns out the analog of maps f:X→K is related to asymptotically Lipschitz maps, the analog of paracompact spaces are spaces related to Yu’s Property A, and the dimension coincides with Gromov’s asymptotic dimension.
引用
收藏
页码:561 / 571
页数:10
相关论文
共 10 条
[1]  
Bell G.(2004)On asymptotic dimension of groups acting on trees Geom. Dedic. 103 89-101
[2]  
Dranishnikov A.(2008)Hyperbolic dimension of metric spaces St. Petersburg Math. J. 19 67-76
[3]  
Buyalo S.(2003)Partitions of unity Topol. Proc. 27 125-171
[4]  
Schroeder V.(2008)What is …Property A? Not. Am. Math. Soc. 55 474-475
[5]  
Dydak J.(1969)A new proof that metric spaces are paracompact Proc. Am. Math. Soc. 20 603-982
[6]  
Nowak P.(1948)Paracompactness and product spaces Bull. Am. Math. Soc. 54 977-240
[7]  
Yu G.(2000)The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space Invent. Math. 139 201-undefined
[8]  
Rudin M.E.(undefined)undefined undefined undefined undefined-undefined
[9]  
Stone A.H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Yu G.(undefined)undefined undefined undefined undefined-undefined