Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow

被引:0
作者
Xiao-Jun Yang
J. A. Tenreiro Machado
Jordan Hristov
机构
[1] China University of Mining and Technology,Department of Mathematics and Mechanics
[2] Rua Dr. Antonio Bernardino de Almeida 431,Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto
[3] University of Chemical Technology and Metallurgy,Department of Chemical Engineering
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Conservation laws; Burgers’ equation; Transport equation; Diffusion equation; Local fractional derivative;
D O I
暂无
中图分类号
学科分类号
摘要
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
引用
收藏
页码:3 / 7
页数:4
相关论文
共 75 条
[51]  
Ara A(undefined)undefined undefined undefined undefined-undefined
[52]  
Mahmood A(undefined)undefined undefined undefined undefined-undefined
[53]  
Yang XJ(undefined)undefined undefined undefined undefined-undefined
[54]  
Srivastava HM(undefined)undefined undefined undefined undefined-undefined
[55]  
He JH(undefined)undefined undefined undefined undefined-undefined
[56]  
Baleanu D(undefined)undefined undefined undefined undefined-undefined
[57]  
Yang XJ(undefined)undefined undefined undefined undefined-undefined
[58]  
Baleanu D(undefined)undefined undefined undefined undefined-undefined
[59]  
Zhong WP(undefined)undefined undefined undefined undefined-undefined
[60]  
Zhang Y(undefined)undefined undefined undefined undefined-undefined