Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow

被引:0
作者
Xiao-Jun Yang
J. A. Tenreiro Machado
Jordan Hristov
机构
[1] China University of Mining and Technology,Department of Mathematics and Mechanics
[2] Rua Dr. Antonio Bernardino de Almeida 431,Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto
[3] University of Chemical Technology and Metallurgy,Department of Chemical Engineering
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Conservation laws; Burgers’ equation; Transport equation; Diffusion equation; Local fractional derivative;
D O I
暂无
中图分类号
学科分类号
摘要
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
引用
收藏
页码:3 / 7
页数:4
相关论文
共 75 条
[1]  
Burgers JM(1948)A mathematical model illustrating the theory of turbulence Adv. Appl. Mech. 1 171-199
[2]  
Cole JD(1951)On a quasi-linear parabolic equation occurring in aerodynamics Quart. Appl. Math. 9 225-236
[3]  
Hopf E(1950)The partial differential equation u t + uu x = u xx Commun. Pure Appl. Math. 3 201-230
[4]  
Lax PD(1957)Hyperbolic systems of conservation laws II Commun. Pure Appl. Math. 10 537-566
[5]  
Avrin JD(1987)The generalized Burgers’ equation and the Navier-Stokes equation in Rn with singular initial data Proc. Am. Math. Soc. 101 29-40
[6]  
Hamanaka M(2003)Noncommutative Burgers equation J. Phys. A 36 11981-402
[7]  
Toda K(2002)Fluctuations in the lattice gas for Burgers’ equation J. Phys. A 35 L579-374
[8]  
Haselwandter C(1994)Stochastic Burgers’ equation NoDEA 1 389-816
[9]  
Vvedensky DD(1997)On the decay of Burgers turbulence J. Fluid Mech. 344 339-2053
[10]  
Da Prato G(1978)Traffic current fluctuation and the Burgers equation Jpn. J. Appl. Phys. 17 811-193