A limit theorem for the lerch zeta-function in the space of analytic functions

被引:0
作者
Laurinčikas A. [1 ]
机构
[1] Vilnius University, 2006 Vilnius
关键词
Analytic Function; Probability Measure; Limit Theorem; Dirichlet Series; Transcendental Number;
D O I
10.1007/BF02465887
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:146 / 155
页数:9
相关论文
共 8 条
  • [1] Bagchi B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series, (1981)
  • [2] Billingsley P., Convergence of Probability Measures, (1968)
  • [3] Ganinkstis R., Laurincikas A., On the Lerch zeta-function, Lith. Math. J.
  • [4] Laurincikas A., Misevicius G., A weighted limit theorem for the Riemann zeta-function in the space of analytic functions, Lith. Math. J., 34, pp. 171-182, (1994)
  • [5] Laurincikas A., Limit theorems for the Matsumoto zeta-function. Preprint 94-6, Vilnius University (1994), J. Théorie des Nombres de Bordeaux
  • [6] Laurincikas A., On limit theorems for the Riemann zeta-function in some spaces, Probab. Theory and Math. Statist. Proc. Sixth Vilnius Conf. (1993), pp. 457-483, (1994)
  • [7] Launncikas A., Limit Theorems for the Riemann Zeta-Function, (1996)
  • [8] Lerch M., Note sur la fonction K(w, x, s) = ∑<sub>n≥0</sub>exp{2πinx}(n+w)<sup>-s</sup>, Acta Math., 11, pp. 19-24, (1887)