On a system of nonlinear wave equations with Balakrishnan–Taylor damping

被引:3
作者
Chunlai Mu
Jie Ma
机构
[1] Chongqing University,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2014年 / 65卷
关键词
35L20; 35L70; 58G16; Balakrishnan–Taylor damping; General decay; Relaxation function; Viscoelastic material; Blow up;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the initial-boundary value problem for a coupled system of nonlinear viscoelastic wave equations of Kirchhoff type with Balakrishnan–Taylor damping terms. For certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation functions which is not necessarily of exponential or polynomial type. Also, we show that nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of stronger damping.
引用
收藏
页码:91 / 113
页数:22
相关论文
共 55 条
[1]  
Alves C.O.(2009)On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms Discrete Contin. Dyn. Syst. Ser. S 2 583-608
[2]  
Cavalcanti M.M.(2006)On exponential asymptotic stability in linear viscoelasticity Math. Models Methods Appl. Sci. 16 1677-1694
[3]  
Domingos Cavalcanti V.N.(1977)Remarks on blow up and nonexistence theorems nonlinear evolution equations Q. J. Math. Oxford 28 473-486
[4]  
Rammaha M. A.(2005)On nonlinear wave equations with degenerate damping and source terms Trans. Am. Math. Soc. 357 2571-2622
[5]  
Toundyjov D.(2006)Existence and decay of solutions of a viscoelastic equation with a nonlinear source Nonlinear Anal. 64 2314-2331
[6]  
Appleby J.A.D.(2011)Integro-differential equations of hyperbolic type with positive definite kernels J. Differ. Equ. 250 4289-4335
[7]  
Fabrizio M.(2001)Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping Differ. Integral Equ. Appl. 14 85-116
[8]  
Lazzri B.(2008)General decay rate estimates for viscoelastic dissipative system Nonlinear Anal. Theory Methods Appl. 68 177-193
[9]  
Reynolds D.W.(2003)Frictional versus viscoelastic damping in a semilinear wave equation SIAM J. Control Optim. 42 1310-1324
[10]  
Ball J.(2007)Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction J. Differ. Equ. 236 407-459