Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

被引:0
作者
Suryajith Chillara
Partha Mukhopadhyay
机构
[1] IIT Bombay,Department of CSE
[2] Chennai Mathematical Institute,undefined
来源
computational complexity | 2019年 / 28卷
关键词
Lower bounds; Determinantal complexity; Constant depth; Arithmetic circuits; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
Tavenas (Proceedings of mathematical foundations of computer science (MFCS), 2013) has recently proved that any nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{O(1)}$$\end{document}-variate and degree n polynomial in VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {VP}$$\end{document} can be computed by a depth-4 ΣΠΣΠ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \Pi \Sigma \Pi $$\end{document} circuit of size 2O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{O(\sqrt{n}\log n)}$$\end{document}. So, to prove VP≠VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {VP}\ne \mathsf {VNP}$$\end{document} it is sufficient to show that an explicit polynomial in VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {VNP}$$\end{document} of degree n requires 2ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\omega (\sqrt{n}\log n)}$$\end{document} size depth-4 circuits. Soon after Tavenas’ result, for two different explicit polynomials, depth-4 circuit-size lower bounds of 2Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (\sqrt{n}\log n)}$$\end{document} have been proved (see Kayal et al. in Proceedings of symposium on theory of computing, ACM, 2014b. http://doi.acm.org/10.1145/2591796.2591847; Fournier et al. in Proceedings of symposium on theory of computing, ACM, 2014). In particular, using a combinatorial design Kayal et al. (2014b) construct an explicit polynomial in VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {VNP}$$\end{document} that requires depth-4 circuits of size 2Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (\sqrt{n}\log n)}$$\end{document} and Fournier et al. (Proceedings of symposium on theory of computing, ACM, 2014) show that the iterated matrix multiplication polynomial (which is in VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {VP}$$\end{document}) also requires 2Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (\sqrt{n}\log n)}$$\end{document} size depth-4 circuits.
引用
收藏
页码:545 / 572
页数:27
相关论文
共 6 条
  • [1] Cai Jin-Yi(1990)A note on the determinant and permanent problem Information and Computation 84 119-127
  • [2] Jansen Maurice(1987)Permanent and determinant Linear Algebra and its Applications 96 87-100
  • [3] Kalorkoti Kyriakos(2011)Lower Bounds for the Determinantal Complexity of Explicit Low Degree Polynomials Theory of Computing Systems 49 343-354
  • [4] Koiran Pascal(1985)A Lower Bound for the Formula Size of Rational Functions SIAM Journal of Computing 14 678-687
  • [5] Meshulam Roy(2012)Arithmetic circuits: The chasm at depth four gets wider Theor. Comput. Sci. 448 56-65
  • [6] Toda Seinosuke(1989)On two extremal matrix problems Linear Algebra and its Applications 114 261-271