String-like brane splitting in the context of f(T,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {B})$$\end{document} gravity

被引:0
作者
A. R. P. Moreira
C. A. S. Almeida
机构
[1] Universidade Federal do Ceará (UFC),Departamento de Física
关键词
Braneworld model; Modified theories of gravity; Boundary term; Teleparallelism;
D O I
10.1007/s10714-023-03136-1
中图分类号
学科分类号
摘要
In this work, the influence of the boundary term B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} is analyzed in a string-like thick brane scenario in the gravity context f(T,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {B})$$\end{document}. For that, three models of f(T,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,\mathcal {B})$$\end{document} are proposed, i. e., f1(T,B)=T+kBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1(T,\mathcal {B})=T+k\mathcal {B}^{n}$$\end{document}, f2(T,B)=T+k(-T+B)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_2(T,\mathcal {B})=T+k(-T+\mathcal { B})^{n}$$\end{document} and f3(T,B)=T+k1T2+k2B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_3(T,\mathcal {B})=T+k_1T^2+k_2\mathcal {B}^2$$\end{document}, where n, k and k1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{1,2}$$\end{document} are parameters that control the deviation from the usual teleparallelism. The first relevant result obtained was the appearance of a super-located tower in the core for energy density. Furthermore, the greater the influence of the boundary term, the new maximums and minimums appear in the energy density. All this indicates the emergence of capable structures from split to the brane. The second relevant result was obtained by analyzing the gravitational perturbations, where the effective potential presents the supersymmetric form of quantum mechanics, leading to well-localized massless modes.
引用
收藏
相关论文
共 172 条
  • [1] Randall L(1999)undefined Phys. Rev. Lett. 83 4690-438
  • [2] Sundrum R(1999)undefined Phys. Rev. Lett. 83 3370-410
  • [3] Randall L(2005)undefined Nucl. Phys. B 726 75-200
  • [4] Sundrum R(2010)undefined JHEP 1004 039-1160
  • [5] Schwindt JM(1983)undefined Phys. Lett. B 125 136-319
  • [6] Wetterich C(1985)undefined Phys. Lett. B 159 22-175
  • [7] Gherghetta T(2000)undefined Phys. Lett. B 478 434-175
  • [8] von Harling B(2009)undefined Phys. Lett. B 671 402-3553
  • [9] Rubakov VA(2010)undefined Rep. Prog. Phys. 73 026-4695
  • [10] Shaposhnikov ME(2001)undefined JHEP 05 187-80