Optimal Control of Linear Time-Varying Systems via Haar Wavelets

被引:0
作者
C. H. Hsiao
W. J. Wang
机构
[1] National Central University,Department of Electrical Engineering
来源
Journal of Optimization Theory and Applications | 1999年 / 103卷
关键词
Optimal control; Haar wavelets;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces the application of Haar wavelets to the optimal control synthesis for linear time-varying systems. Based upon some useful properties of Haar wavelets, a special product matrix, a related coefficient matrix, and an operational matrix of backward integration are proposed to solve the adjoint equation of optimization. The results obtained by the proposed Haar approach are almost the same as those obtained by the conventional Riccati method.
引用
收藏
页码:641 / 655
页数:14
相关论文
共 14 条
  • [1] Chen C. F.(1997)A Haar Wavelet Method for Solving Lumped and Distributed Parameter Systems IEE Proceedings—Control Theory and Applications 144D 87-94
  • [2] Hsiao C. H.(1997)State Analysis of Linear Time-Delayed Systems via Haar Wavelets Mathematics and Computers in Simulation 44 457-470
  • [3] Hsiao C. H.(1990)The Wavelet Transform, Time-Frequency Localization, and Signal Analysis IEEE Transactions on Information Theory 36 961-1005
  • [4] Daubechies I.(1910)Zur Theorie der Orthogonalen Funktionen Systeme Mathematische Annalen 69 331-371
  • [5] Haar A.(1989)Wavelets and Dilation Equations: A Brief Introduction SIAM Review 31 614-627
  • [6] Strang G.(1975)Time Domain Synthesis via Walsh Functions IEE Proceedings 122 565-570
  • [7] Chen C. F.(1975)Walsh Series Analysis in Optimal Control International Journal of Control 21 881-897
  • [8] Hsiao C. H.(1975)A State-Space Approach to Walsh Series Solution of Linear Systems International Journal of Systems Science 6 833-858
  • [9] Chen C. F.(1975)Design of Piecewise Constant Gains for Optimal Control via Walsh Functions IEEE Transactions on Automatic Control 20 596-603
  • [10] Hsiao C. H.(undefined)undefined undefined undefined undefined-undefined