The Exponential Map Near Conjugate Points In 2D Hydrodynamics

被引:0
作者
Misiołek G. [1 ,2 ]
机构
[1] Department of Mathematics, University of Colorado, Boulder, 80309-0395, CO
[2] Department of Mathematics, University of Notre Dame, Notre Dame, 46556, IN
关键词
Conjugate points; Diffeomorphisms; Exponential map; Fredholm map;
D O I
10.1007/s40598-015-0019-1
中图分类号
学科分类号
摘要
We prove that the weak-Riemannian exponential map of the L2 metric on the group of volume-preserving diffeomorphisms of a compact two-dimensional manifold is not injective in any neighbourhood of its conjugate vectors. This can be viewed as a hydrodynamical analogue of the classical result of Morse and Littauer. © 2015, Institute for Mathematical Sciences (IMS), Stony Brook University, NY.
引用
收藏
页码:243 / 251
页数:8
相关论文
共 25 条
[1]  
Arnold V., Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16, pp. 319-361, (1966)
[2]  
Arnold V., Arnold’s Problems, (2004)
[3]  
Arnold V., Khesin B., Topological Methods in Hydrodynamics, (1998)
[4]  
Benn J., PhD Dissertation, University of Notre Dame, (2014)
[5]  
Benn J., Conjugate points on the symplectomorphism group, Ann. Glob. Anal. Geom., (2015)
[6]  
Biliotti L., Exel R., Piccione P., Tausk D., On the singularities of the exponential map in infinite dimensional Riemannian manifolds, Math. Ann., 336, pp. 247-267, (2006)
[7]  
Cheeger J., Ebin D., Comparison Theorems in Riemannian Geometry, (1975)
[8]  
Ebin D., Marsden J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92, pp. 102-163, (1970)
[9]  
Ebin D., Misiolek G., Preston S., Singularities of the exponential map on the volume-preserving diffeomorphism group, Geom. Funct. Anal., 16, pp. 850-868, (2006)
[10]  
Gohberg I., Kaashoek M., Lay D., Equivalence, linearization and decomposition of holomorphic operator functions, J. Funct. Anal., 28, pp. 102-144, (1978)