Self-dual vortices in Abelian Higgs models with dielectric function on the noncommutative plane

被引:0
|
作者
W. García Fuertes
J. Mateos Guilarte
机构
[1] Universidad de Oviedo,Departamento de Física, Facultad de Ciencias
[2] Universidad de Salamanca,Departamento de Física Fundamental and IUFFyM
来源
The European Physical Journal C | 2014年 / 74卷
关键词
Vortex; Dielectric Function; Star Product; Topological Sector; Abelian Higgs Model;
D O I
暂无
中图分类号
学科分类号
摘要
We show that Abelian Higgs Models with a dielectric function defined on the noncommutative plane enjoy self-dual vorticial solutions. By choosing a particular form of the dielectric function, we provide a family of solutions whose Higgs and magnetic fields interpolate between the profiles of the noncommutative Nielsen–Olesen and Chern–Simons vortices. This is done both for the usual U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)$$\end{document} model and for the SU(2)×U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)\times U(1)$$\end{document} semilocal model with a doublet of complex scalar fields. The variety of known noncommutative self-dual vortices which display a regular behavior when the noncommutativity parameter tends to zero results in this way considerably enlarged.
引用
收藏
相关论文
共 4 条
  • [1] Self-dual vortices in Abelian Higgs models with dielectric function on the noncommutative plane
    Garcia Fuertes, W.
    Mateos Guilarte, J.
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (08): : 1 - 16
  • [2] SCATTERING OF VORTICES IN ABELIAN HIGGS MODELS ON COMPACT RIEMANN SURFACES
    Palvelev, R. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (02): : 293 - 310
  • [3] Self-Dual Vortices in Chern–Simons Hydrodynamics
    J. H. Lee
    O. K. Pashaev
    Theoretical and Mathematical Physics, 2001, 127 : 779 - 788
  • [4] The existence of multi-vortices for a generalized self-dual Chern-Simons model
    Han, Xiaosen
    NONLINEARITY, 2013, 26 (03) : 805 - 835