The adaptive effects of hypoxic preconditioning of brain neurons

被引:45
作者
M. O. Samoilov
E. V. Lazarevich
D. G. Semenov
A. A. Mokrushin
E. I. Tyul'kova
D. Yu. Romanovskii
E. A. Milyakova
K. N. Dudkin
机构
[1] I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg
[2] Medical Research Center, Polish Academy of Sciences, Warsaw
基金
俄罗斯基础研究基金会;
关键词
Hypoxia; Olfactory slices; Preconditioning;
D O I
10.1023/A:1021119112927
中图分类号
学科分类号
摘要
Prophylactic transient hypoxia (preconditioning) increased neuron resistance to subsequent induction of severe hypoxia. Published data and results obtained by the authors on the molecular-cellular mechanisms of hypoxic preconditioning are presented. The roles of intracellular signal transduction, genome function, stress proteins, and neuromodulatory peptides in this process are discussed. The roles of glutamatergic as well as calcium and phosphoinositide regulatory systems and neuromodulatory factors as components of volume" signal transmission are analyzed in hypoxic preconditioning-associated induction of functional tolerance mechanisms against the acute harmful effects of hypoxia on neurons in olfactory slices."
引用
收藏
页码:1 / 11
页数:10
相关论文
共 78 条
  • [31] Heurteaux C., Lauritzen I., Wildmann C., Lazdunski M., Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K<sup>+</sup> channels in cerebral ischemic preconditioning, Proc. Natl. Acad. Sci. USA, 92, pp. 4666-4670, (1995)
  • [32] Hsu K.S., Huang C.C., Protein kinase C inhibitors block Generation of anoxia-induced long-term potentiation, Neuroreport, 9, 15, pp. 3525-2529, (1998)
  • [33] Hughes P.J., Alexi T., Schreider S.S., A role for the tumour suppressor gene p53 in regulating neuronal apoptosis, Neuroreport, 8, 15, pp. 5-12, (1997)
  • [34] Hughes P.J., Michell R.H., Novel inositol-containing phospholipids and phosphates: Their synthesis and possible new roles in cellular signalling, Curr. Opin. Neurobiol., 3, 3, pp. 383-400, (1993)
  • [35] Hunter A.J., Calcium antagonists: Their role in neuroprotection, Neuroprotective Agents and Cerebral Ischemia, pp. 95-108, (1997)
  • [36] Kato H., Kogure K., Araki T., Liu X.H., Itoshina Y., Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance, J. Cereb. Blood Flow Metab., 145, pp. 60-70, (1995)
  • [37] Kato H., Liu Y., Araki T., Kogure K., Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemia in the gerbil: Cumulative damage and protective effects, Brain Res., 553, pp. 238-242, (1991)
  • [38] Kato H., Liu Y., Araki T., Kogure K., MK-801 (but not anisomycin) inhibits the induction of tolerance to ischemia in gerbil hippocampus, Neurosci. Lett., 139, pp. 118-121, (1992)
  • [39] Kindy M.S., Carney J.P., Dempsey R.J., Carney J.M., Ischemic induction of protooncogene expression in the gerbil brain, J. Mol. Neurosci., 2, 4, pp. 217-228, (1991)
  • [40] Kirino T., Tsujita Y., Tamura A., Induced tolerance to ischemia in gerbil hippocampal neurons, J. Cereb. Blood Flow Metab., 11, pp. 199-307, (1991)