The adaptive effects of hypoxic preconditioning of brain neurons

被引:45
作者
M. O. Samoilov
E. V. Lazarevich
D. G. Semenov
A. A. Mokrushin
E. I. Tyul'kova
D. Yu. Romanovskii
E. A. Milyakova
K. N. Dudkin
机构
[1] I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg
[2] Medical Research Center, Polish Academy of Sciences, Warsaw
基金
俄罗斯基础研究基金会;
关键词
Hypoxia; Olfactory slices; Preconditioning;
D O I
10.1023/A:1021119112927
中图分类号
学科分类号
摘要
Prophylactic transient hypoxia (preconditioning) increased neuron resistance to subsequent induction of severe hypoxia. Published data and results obtained by the authors on the molecular-cellular mechanisms of hypoxic preconditioning are presented. The roles of intracellular signal transduction, genome function, stress proteins, and neuromodulatory peptides in this process are discussed. The roles of glutamatergic as well as calcium and phosphoinositide regulatory systems and neuromodulatory factors as components of volume" signal transmission are analyzed in hypoxic preconditioning-associated induction of functional tolerance mechanisms against the acute harmful effects of hypoxia on neurons in olfactory slices."
引用
收藏
页码:1 / 11
页数:10
相关论文
共 78 条
  • [1] Osterman L.A., Methods for studying proteins and nucleic acids, Electrophoresis and Ultracentrifugation, (1981)
  • [2] Samoilov M.O., The Brain and Adaptation, Molecular-Cellular Mechanisms, (1999)
  • [3] Samoilov M.O., Mokrushin A.A., Molecular-cellular mechanisms of 'volume' transmission in the brain, Reports of the Scientific Council of the Russian Academy of Medical Sciences in Experimental and Applied Physiology, 6, pp. 12-13, (1996)
  • [4] Samoilov M.O., Mokrushin A.A., Peptide modulation of synaptic plasticity induced by anoxia, Dokl. Ros. Akad. Nauk., 354, 4, pp. 565-567, (1997)
  • [5] Samoilov M.O., Mokrushin A.A., The role of endogenous neuromodulatory peptides in increasing the functional tolerance of brain neurons to anoxia, Byull. Éksperim. Biol. Med., 125, 5, pp. 503-505, (1998)
  • [6] Samoilov M.O., Semenov D.G., Tyul'kova E.I., Bolekhan E.A., Molecular-cellular mechanisms of the protective effect of short-term anoxia, Fiziol. Zh. im. I. M. Sechenova, 80, 12, pp. 71-75, (1994)
  • [7] Semenov D.G., Tyul'kova E.I., Samoilov M.O., Lazarevich E.V., Involvement of intracellular regulatory systems in the adaptive effects of short-term anoxia in vitro, Ros. Fiziol. Zh. im. I. M. Sechenova, 85, 1, pp. 139-148, (1999)
  • [8] Tyul'kova E.I., Semenov D.G., Samoilov M.O., Involvement of the calcium and phosphoinositide systems of intracellular regulation in the adaptation of neurons in olfactory cortex slices to hypoxia in vitro, Byull. Éksperim. Biol. Med., 125, 3, pp. 259-262, (1998)
  • [9] Abe H., Nowak T.S. Jr., Gene expression and induced ischemic tolerance following brief infants, Acta Neurobiol. Exp., 56, 1, pp. 3-8, (1961)
  • [10] An G., Lin T., Liu J., Hxu C.Y., Induction of Krox-20 expression after focal cerebral ischemia, Biochem. Biophys. Res. Commun., 188, 30, pp. 1104-1110, (1992)