Estimation and scaling of hydrostratigraphic units: application of unsupervised machine learning and multivariate statistical techniques to hydrogeophysical data; [Estimation et mise à l’échelle des unités hydrostratigraphiques: application d’un apprentissage automatique non supervisé et de techniques statistiques multivariées à des données hydrogéophysiques]; [Estimativa e dimensionamento de unidades hidroestratigráficas: aplicação de aprendizagem automática não-supervisionada e técnicas de estatística multivariada para dados hidrogeofísicos]; [Estimación y escalado de unidades hidroestratigráficas: aplicación del aprendizaje automático sin supervisión y de las técnicas estadísticas multivariadas a datos hidrogeofísicos]

被引:0
作者
Friedel M.J. [1 ,2 ]
机构
[1] Hydrogeology Department, GNS Science, 1 Fairway Drive, Avalon, Lower Hutt
[2] Department of Mathematical & Statistical Sciences, University of Colorado, Campus Box 170, PO Box 173364, Denver, 80217-3364, CO
关键词
Airborne geophysics; Hydrogeophysics; Hydrostratigraphic units; Machine-learning; USA;
D O I
10.1007/s10040-016-1452-5
中图分类号
学科分类号
摘要
Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:2103 / 2122
页数:19
相关论文
共 50 条
[1]  
Abraham J.D., Cannia J.C., Bedrosian P.A., Johnson M.R., Ball L.B., Sibray S.S., Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska, US Geol Surv Sci Invest Rep, pp. 2011-5219, (2012)
[2]  
Anderson M.P., Woessner W.W., Applied groundwater modeling, (2002)
[3]  
Breiman L., Bagging predictors, Mach Learn, 24, pp. 123-140, (1996)
[4]  
Cannia J.C., Woodward D., Cast L.C., Cooperative Hydrology Study [COHYST] hydrostratigraphic units and aquifer characterization report. Nebraska Dept. of Natural Resources Cooperative Hydrology Study, Lincoln, NB, (2006)
[5]  
Carneiro C.C., Fraser S.J., Crosta A.P., Silva A.M., Barros C.E., Semiautomated geologic mapping using self-organizing maps and airborne geophysics, Brazilian Amazon, Geophysics, 77, 4, pp. K17-K24, (2012)
[6]  
Castro de Matos M., Manassi O.P.L., Schroeder J.P.R., Unsupervised seismic facies analysis using wavelet transform and self-organizing maps, Geophysics, 72, 1, pp. 19-21, (2007)
[7]  
Davies D.L., Bouldin D.W., A cluster separation measure, IEEE Trans Patt Anal Mach Intel, PAMI-1, pp. 224-227, (1979)
[8]  
Dickson B.L., Giblin A.M., An evaluation of methods for imputation of missing trace element data in groundwaters, Geochem Explor Environ Anal, 7, 2, pp. 173-178, (2007)
[9]  
Dubreuil-Boisclair C., Gloaguen E., Marcotte D., Girouxv B., Heterogeneous aquifer characterization from ground-penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations, Geophysics, 76, 4, pp. 1-13, (2011)
[10]  
Dunn J., Well separated clusters and optimal fuzzy partitions, J Cybernetics, 4, pp. 95-104, (1974)