An efficient algebraic multigrid preconditioner for a fast multipole boundary element method

被引:0
作者
G. Of
机构
[1] Graz University of Technology,Institute of Computational Mathematics
来源
Computing | 2008年 / 82卷
关键词
Boundary element method; Algebraic multigrid; Fast multipole method; 65N38; 65N55; 65N22; 65F50;
D O I
暂无
中图分类号
学科分类号
摘要
Fast boundary element methods still need good preconditioning techniques for an almost optimal complexity. An algebraic multigrid method is presented for the single layer potential using the fast multipole method. The coarsening is based on the cluster structure of the fast multipole method. The effort for the construction of the nearfield part of the coarse grid matrices and for an application of the multigrid preconditioner is of the same almost optimal order as the fast multipole method itself.
引用
收藏
页码:139 / 155
页数:16
相关论文
共 56 条
[1]  
Bebendorf M(2005)Hierarchical LU decomposition-based preconditioners for BEM Computing 74 225-247
[2]  
Bebendorf M(2003)Adaptive low-rank approximation of collocation matrices Computing 70 1-24
[3]  
Rjasanow S(1994)The analysis of multigrid algorithms for pseudodifferential operators of order minus one Math Comput 63 461-478
[4]  
Bramble JH(1990)Parallel multilevel preconditioners Math Comput 55 1-22
[5]  
Leyk Z(1993)Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution Adv Comput Math 1 259-335
[6]  
Pasciak JE(1997)The BPX preconditioner for the single layer potential operator Appl Anal 67 327-340
[7]  
Bramble JH(1987)A fast algorithm for particle simulations J Comput Phys 73 325-348
[8]  
Pasciak JE(1999)A sparse matrix arithmetic based on Computing 62 89-108
[9]  
Xu J(2006) -matrices. I. Introduction to Computing 77 253-273
[10]  
Dahmen W(1989) -matrices Numer Math 54 463-491