Finite groups whose maximal subgroups of sylow p-subgroups admit a p-solvable supplement

被引:0
作者
GuoHua Qian
机构
[1] Changshu Institute of Technology,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
finite group; -solvable group; Sylow subgroup; supplement; 20D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable. This gives a positive answer to Problem 17.111 of the Kourovka Notebook (Unsolved Problems in Group Theory), which was posed by Skiba.
引用
收藏
页码:1015 / 1018
页数:3
相关论文
共 50 条
[41]   On the partial Π-property of second minimal or second maximal subgroups of Sylow subgroups of finite groups [J].
Qiu, Zhengtian ;
Chen, Guiyun ;
Liu, Jianjun .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) :5203-5214
[42]   On normalizers of Sylow subgroups in finite groups [J].
Ballester-Bolinches, A ;
Shemetkov, LA .
SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (01) :1-2
[43]   FINITE GROUPS WHOSE MAXIMAL SUBGROUPS HAVE ONLY SOLUBLE PROPER SUBGROUPS [J].
Lytkina, D. V. ;
Zhurtov, A. Kh. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01) :237-240
[44]   Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups [J].
Ballester-Bolinches, A. ;
Kamornikov, S. F. ;
Perez-Calabuig, V. ;
Yi, X. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
[45]   On second minimal subgroups of Sylow subgroups of finite groups [J].
Ballester-Bolinches, A. ;
Esteban-Romero, R. ;
Li, Yangming .
JOURNAL OF ALGEBRA, 2011, 342 (01) :134-146
[46]   On the Regularity Sylow's p-subgroups of Symplectic and Orthogonal Groups over Ring Z/p(m)Z [J].
Kolesnikov, Sergey G. ;
Maltsev, Nikolay V. .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2011, 4 (04) :489-497
[47]   Finite groups with given properties of basic subgroups of fans of Sylow subgroups [J].
Vasilyeva, Tatsiana, I .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (01)
[48]   FINITE GROUPS WITH SEMINORMAL OR ABNORMAL SYLOW SUBGROUPS [J].
Monakhov, Victor ;
Sokhor, Irina .
INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (03) :139-142
[49]   On the number of Sylow subgroups in finite simple groups [J].
Wu, Zhenfeng .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (07)
[50]   Finite groups with submodular sylow subgroups [J].
Vasilyev, V. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :1019-1027