Finite groups whose maximal subgroups of sylow p-subgroups admit a p-solvable supplement

被引:0
作者
GuoHua Qian
机构
[1] Changshu Institute of Technology,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
finite group; -solvable group; Sylow subgroup; supplement; 20D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that if every maximal subgroup of a Sylow p-subgroup of a finite group has a p-solvable supplement then the group is necessarily p-solvable. This gives a positive answer to Problem 17.111 of the Kourovka Notebook (Unsolved Problems in Group Theory), which was posed by Skiba.
引用
收藏
页码:1015 / 1018
页数:3
相关论文
共 50 条
[31]   Finite groups with S-supplemented p-subgroups [J].
N. Yang ;
W. Guo ;
O. L. Shemetkova .
Siberian Mathematical Journal, 2012, 53 :371-376
[32]   Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices [J].
W. Guo ;
A. S. Kondrat’ev ;
N. V. Maslova ;
L. Miao .
Proceedings of the Steklov Institute of Mathematics, 2020, 309 :S47-S51
[33]   Finite groups whose maximal subgroups are solvable or have prime power indices [J].
Guo, W. ;
Kondrat'ev, A. S. ;
Maslova, N., V ;
Miao, L. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (02) :125-131
[34]   Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices [J].
Guo, W. ;
Kondrat'ev, A. S. ;
Maslova, N. V. ;
Miao, L. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (SUPPL 1) :S47-S51
[35]   DEGREES OF BRAUER CHARACTERS AND NORMAL SYLOW p-SUBGROUPS [J].
Chen, Xiaoyou ;
Lewis, Mark L. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (02) :237-239
[36]   FINITE GROUPS WITH SOLVABLE OR Φ-SIMPLE MAXIMAL SUBGROUPS [J].
Bazhanova, E. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) :611-619
[37]   On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups [J].
Trofimuk, A. .
ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01) :139-146
[38]   FINITE GROUPS WITH COMPLEMENTED 2-MINIMAL p-SUBGROUPS [J].
ZENG, Y. U. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (03) :430-438
[39]   Finite factorizable groups with solvable P2-subnormal subgroups [J].
Kniahina, V. N. ;
Monakhov, V. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (01) :56-63
[40]   On normalizers of Sylow subgroups in finite groups [J].
A. Ballester-Bolinches ;
L. A. Shemetkov .
Siberian Mathematical Journal, 1999, 40 :1-2