A multimodal graph neural network framework for cancer molecular subtype classification

被引:0
作者
Bingjun Li
Sheida Nabavi
机构
[1] University of Connecticut,Department of Computer Science and Engineering
来源
BMC Bioinformatics | / 25卷
关键词
Graph attention network; Multi-omics integration; Cancer subtype; Molecular subtype;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 147 条
[1]  
Yang B(2019)Integrating multi-omic data with deep subspace fusion clustering for cancer subtype prediction IEEE/ACM Trans Comput Biol Bioinform 18 216-226
[2]  
Zhang Y(2019)Moli: multi-omics late integration with deep neural networks for drug response prediction Bioinformatics 35 501-509
[3]  
Pang S(2021)Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification Nat Commun 12 3445-11
[4]  
Shang X(2019)Integrate multi-omics data with biological interaction networks using multi-view factorization autoencoder (mae) BMC Genomics 20 1-384
[5]  
Zhao X(2022)Multi-omic graph transformers for cancer classification and interpretation Pac Symp Biocomput 27 373-13
[6]  
Han M(2019)Salmon: survival analysis learning with multi-omics neural networks on breast cancer Front Genet 10 1-443
[7]  
Sharifi-Noghabi H(2021)Integrating multi-omics data through deep learning for accurate cancer prognosis prediction Comput Biol Med 134 104481-944
[8]  
Zolotareva O(2021)Integrative multi-omics approaches in cancer research: from biological networks to clinical subtypes Mol Cells 44 433-665
[9]  
Collins CC(2014)Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin Cell 158 929-304
[10]  
Ester M(2022)Delivering precision oncology to patients with cancer Nat Med 28 658-3852