On the log abundance for compact Kähler threefolds

被引:0
作者
Omprokash Das
Wenhao Ou
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
manuscripta mathematica | 2024年 / 173卷
关键词
14E30; 32J17; 32J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show that if (X,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \Delta )$$\end{document} is a log canonical compact Kähler threefold such that KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is nef and the numerical dimension ν(KX+Δ)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (K_X+\Delta )\ne 2$$\end{document}, then KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is semi-ample.
引用
收藏
页码:341 / 404
页数:63
相关论文
共 43 条
  • [1] Ambro F(2005)The moduli Compos. Math. 141 385-403
  • [2] Boucksom S(2013)-divisor of an lc-trivial fibration J. Algebraic Geom. 22 201-248
  • [3] Demailly J-P(2004)The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Ann. Sci. École Norm. Sup. (4) 37 45-76
  • [4] Păun M(2020)Divisorial Zariski decompositions on compact complex manifolds J. Differ. Geom. 114 1-39
  • [5] Peternell T(2016)Rational curves on compact Kähler manifolds Ann. Sci. Éc. Norm. Supér. (4) 49 971-1025
  • [6] Boucksom S(1992)Abundance for Kähler threefolds J. Algebraic Geom. 1 361-409
  • [7] Cao J(2003)Regularization of closed positive currents and intersection theory J. Differ. Geom. 63 231-277
  • [8] Höring A(2004)A Kawamata–Viehweg vanishing theorem on compact Kähler manifolds Ann. Math. (2) 159 1247-1274
  • [9] Campana F(2019)Numerical characterization of the Kähler cone of a compact Kähler manifold Math. Z. 292 937-946
  • [10] Höring A(2000)On the abundance problem for 3-folds in characteristic Duke Math. J. 102 513-532