Green’s function for an elastic layer with temperature-dependent properties

被引:0
作者
S. J. Matysiak
D. M. Perkowski
机构
[1] University of Warsaw,
[2] Białystok University of Technology,undefined
来源
Materials Science | 2013年 / 48卷
关键词
temperature; displacements; stresses; elasticity; temperature-dependent properties; concentrated load;
D O I
暂无
中图分类号
学科分类号
摘要
The distributions of stresses and displacements in a thermoelastic layer with temperature-dependent properties are investigated. The problem is considered for the case of antiplane strain state. The boundary planes are assumed to be kept at constant temperatures. The upper boundary plane is free of loading, and the lower plane is loaded by a concentrated force. The solution is found in the form of integrals and the singularities of stresses are determined.
引用
收藏
页码:607 / 613
页数:6
相关论文
共 24 条
[1]  
Nowiński JL(1959)Thermoelastic problem for an isotropic sphere with temperature dependent properties Z. Angew. Math. Phys. 10 565-575
[2]  
Nowiński JL(1960)A Betti–Rayleigh theorem for elastic bodies exhibiting temperature dependent properties Appl. Sci. Res. A9 429-436
[3]  
Nowiński JL(1962)Transient thermoelastic problems for an infinite medium with a spherical cavity exhibiting temperature dependent properties Trans ASME. J. Appl. Mech. 29 399-407
[4]  
Lee HJ(1998)The effect of temperature dependent material properties on the response of piezoelectric composite materials J. Intel. Mater. Syst. Struct. 9 503-508
[5]  
Saravanos DA(1989)The heat conduction problem with temperature-dependent material properties Int. J. Heat Mass Transfer 32 487-491
[6]  
Tao LN(2005)Temperature dependence of the mechanical properties of tetrahedrally coordinated amorphous carbon thin films Appl. Phys. Lett. 87 161,915-161,918
[7]  
Czaplewski DA(1997)Handling temperature dependent properties and boundary conditions in stochastic finite element analysis Numer. Heat Transf. A31 37-51
[8]  
Sullivan JP(2008)Identification of temperature-dependent thermal properties of solid materials J. Brazil Soc. Mech. Sci. Eng. 4 269-278
[9]  
Friedmann TA(1988)Wave fronts in elastic media with temperature dependent properties Appl. Sci. Res. 45 97-106
[10]  
Wendt JR(1986)Generalized thermoelasticity with temperature dependent modulus of elasticity under three theories J. Appl. Math. Comput. 14 193-212