Mixed Boundary Value Problems for the Stationary Navier–Stokes System in Polyhedral Domains

被引:0
作者
V. Maz’ya
J. Rossmann
机构
[1] University of Liverpool,Department of Mathematical Sciences
[2] Linköping University,Department of Mathematics
[3] University of Rostock,Institute of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2009年 / 194卷
关键词
Weak Solution; Dirichlet Problem; Regularity Result; Dirichlet Condition; Small Positive Number;
D O I
暂无
中图分类号
学科分类号
摘要
The authors consider boundary value problems for the Navier–Stokes system in a polyhedral domain, where different boundary conditions (in particular, Dirichlet, Neumann, slip conditions) are arbitrarily combined on the faces of the polyhedron. They prove existence and regularity theorems for weak solutions in weighted (and nonweighted) Lp Sobolev and Hölder spaces with sharp integrability and smoothness parameters.
引用
收藏
页码:669 / 712
页数:43
相关论文
共 33 条
  • [1] Dauge M.(1989)Stationary stokes and Navier–Stokes systems on two- and three-dimensional domains with corners. Part 1: Linearized equations SIAM J. Math. Anal. 20 74-97
  • [2] Deuring P.(1995)Strong solutions of the Navier–Stokes system in Lipschitz bounded domains Math. Nachr. 171 111-148
  • [3] von Wahl W.(2004)The stationary Navier–Stokes system in nonsmooth manifolds: the poisson problem in Lipschitz and Arch. Ration. Mech. Anal. 174 1-47
  • [4] Dindos M.(2001) domains Math. Ann. 319 349-381
  • [5] Mitrea M.(1992)Steady Navier–Stokes equations with mixed boundary value conditions in three-dimensional Lipschitzian domains Z. Anal. Anwendungen 11 509-530
  • [6] Ebmeyer C.(1976)On the flow of a temperature dependent Bingham fluid in nonsmooth bounded two-dimensional domains J. Funct. Anal. 21 397-431
  • [7] Frehse J.(1967)A regularity result for the Stokes problem in a convex polygon J. Appl. Math. Mech. 31 125-129
  • [8] Kalex H.-U.(1994)Asymptotic of solutions of the Navier–Stokes equation near an angular point of the boundary J. Reine Angew. Math. 456 65-97
  • [9] Kellogg R.B.(1984)On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone Am. Math. Soc. Transl. 123 171-268
  • [10] Osborn J.(1988)The three-dimensional problem of steady-state motion of a fluid with a free surface Math. Nachr. 138 27-53