Distance-regular graphs and new block designs obtained from the Mathieu groups

被引:0
作者
Dean Crnković
Nina Mostarac
Andrea Švob
机构
[1] University of Rijeka,Department of Mathematics
来源
Applicable Algebra in Engineering, Communication and Computing | 2024年 / 35卷
关键词
Mathieu group; Distance-regular graph; Strongly regular graph; Block design; Permutation decoding; PD-set; 05E18; 05E30; 94B05; 05B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we construct distance-regular graphs admitting a vertex transitive action of the five sporadic simple groups discovered by E. Mathieu, the Mathieu groups M11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{11}$$\end{document}, M12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{12}$$\end{document}, M22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{22}$$\end{document}, M23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{23}$$\end{document} and M24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{24}$$\end{document}. From the binary code spanned by an adjacency matrix of the strongly regular graph with parameters (176,70,18,34) we obtain block designs having the full automorphism groups isomorphic to the Higman-Sims finite simple group. Moreover, from that code we obtain eight 2-designs having the full automorphism group isomorphic to M22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{22}$$\end{document}, whose existence cannot be explained neither by the Assmus-Mattson theorem nor by a transitivity argument. Further, we discuss a possibility of permutation decoding of the codes spanned by adjacency matrices of the graphs constructed and find small PD-sets for some of the codes.
引用
收藏
页码:177 / 194
页数:17
相关论文
共 34 条
  • [1] Assmus EF(1969)New 5-designs J. Combinatorial Theory A 6 122-151
  • [2] Mattson HF(2007)Decoding the Mathieu group Adv. Math. Commun. 1 477-487
  • [3] Bailey RF(1952)Classification and analysis of partially balanced incomplete block designs with two associate classes J. Amer. Statist. Assoc. 47 151-184
  • [4] Bray JN(2019)Block designs and strongly regular graphs admitting a transitive action of the Mathieu group Australas. J. Combin. 73 149-161
  • [5] Bose RC(2014)On some transitive combinatorial structures constructed from the unitary group J. Statist. Plann. Inference 144 19-40
  • [6] Shimamoto T(2018)New strongly regular graphs from orthogonal groups Discrete Math. 341 2723-2728
  • [7] Crnković D(2020) and J. Algebraic Combin. 51 641-652
  • [8] Mikulić Crnković V(1982)On some distance-regular graphs with many vertices IEEE Trans. Inform. Theory 28 541-543
  • [9] Švob A(2017)Minimal permutation sets for decoding the binary Golay codes Discrete Math. 340 722-728
  • [10] Crnković D(1981)Improved partial permutation decoding for Reed-Muller codes Discrete Math. 36 171-189